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1 Affine Varieties

This section is devoted to introduce the first goal of classical algebraic geometry: studying solutions of polynomial

equations over a field K (from now, K will always denote a fixed algebraically-closed field unless otherwise stated).

1.1 Definitions and Examples

In its easiest form, we want to consider the following type of objects:

Definition 1.1 (Affine variety)

We call
An := An

K := {(a1, . . . , an) : ai ∈ K for i = 1, . . . , n}

the affine n-space over K. For a subset S ⊆ K[x1, x2, . . . , xn] of polynomials, we call

V (S) := {x ∈ An : f(x) = 0 for all f ∈ S} ⊆ An

the zero locus of S. Subsets of An of this form are called affine varieties.

In other words, V (S) is the set of points vanishing on all the polynomials in S. For example, a parabola is the

zero locus of the polynomial V (y − x2):

x

y

V (y − x2)

A2

Caution: As above, when drawing an affine variety V we will of course draw only its real points V ∩ Rn.

Note that An
K is just Kn as a set. We use two different notations here since Kn is also a K-vector space and a

ring. We will usually use the notation An
K if we want to ignore these additional structures: for example, addition or

scalar multiplication is not defined on An
K .

Example 1.2 (Examples of affine varieties)

• The affine n-space itself is an affine variety, since An = V (0).

Similarly, the empty set ∅ = V (1) is an affine variety.

• Any point a = (a1, . . . , an) ∈ An is an affine variety, since {a} = V (x1 − a1, . . . , xn − an).

• The two axes in A2 can be thought of as V (xy); this is the set of points such that x = 0 or y = 0.

Let’s start with some simple properties of the operator V :

Lemma 1.3

(a) For any S1 ⊆ S2 ⊆ K[x1, . . . , xn] we have V (S1) ⊇ V (S2).

(b) For any S1, S2 ⊆ K[x1, . . . , xn] we have V (S1) ∪ V (S2) = V (S1S2), where S1S2 := {fg : f ∈ S1, g ∈ S2}.

(c) If J is any index set and Si ⊆ K[x1, . . . , xn] for all i ∈ J then
⋂

i∈J V (Si) = V
(⋃

i∈J Si

)
.

In particular, finite unions and arbitrary intersections of affine varieties are again affine varieties.
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Proof. (a) If x ∈ V (S2), i.e. f(x) = 0 for all f ∈ S2, then in particular f(x) = 0 for all f ∈ S1, and hence

x ∈ V (S1).

(b) (⊆). If x ∈ V (S1) ∪ V (S2) then f(x) = 0 for all f ∈ S1 or g(x) = 0 for all g ∈ S2. In both case this means

(fg)(x) = 0 for all f ∈ S1 and g ∈ S2, i.e. x ∈ V (S1S2).

(⊇). If x ̸∈ V (S1)∪ V (S2) then x ̸∈ V (S1) and x ̸∈ V (S2), i.e. there are f ∈ S1 and g ∈ S2 such that f(x) ̸= 0

and g(x) ̸= 0. This gives (fg)(x) ̸= 0, so x ̸∈ V (S1S2).

(c) We have x ∈
⋂

i∈J V (Si) if and only if f(x) = 0 for all f ∈ Si for all i ∈ J , which is the case if and only if

x ∈ V
(⋃

i∈J Si

)
.

Thus, for example, any finite set of points is an affine variety. As an important realisation, in the special case

of A1, the zero locus of any non-zero polynomial in K[x] is already finite. Hence, the affine varieties in A1 are

exactly A1 itself and all finite sets. So a typical affine variety in A1 looks like:

A1 a1 a2 a3 an· · ·

V ((x− a1)(x− a2) · · · (x− an))

1.2 Ideals and Hilbert’s Nullstellensatz

As you might have already noticed, a variety can be named by V (·) in multiple ways:

Motivation

For example, in A2,
{(3, 4)} = V (x− 3, y − 4) = V (x− 3, y − x− 1).

That’s a bit annoying, because in an ideal world we would have one name for every variety. To achieve this, a
partial solution is to use ideals rather than sets. Than is, we consider

I = ⟨x− 3, y − 4⟩ = {p · (x− 3) + q · (y − 4) : p, q ∈ K[x, y]}⊴K[x, y]

and look at V (I). Note that in this case ⟨x− 3, y − 4⟩ = ⟨x− 3, y − x− 1⟩ as ideals.

To make this precise, if f and g are polynomials that vanish on a certain subset S ⊆ An, then f + g and pf for

any polynomial p also clearly vanishes on S. Thus for an affine variety V (S) we can add f + g and pf to S without

changing its zero locus, so we always have

V (⟨S⟩) = V (S),

where ⟨S⟩ is the ideal generated by S.

Thus, we can (and will) only consider V (I) where I is an ideal from now on. Moreover, by Hilbert’s Basis

Theorem, any ideal in K[x1, . . . , xn] is finitely generated. This means that:

! Keypoint

Any affine variety can be written as the zero locus of finitely many polynomials.

You might ask whether the identification of a variety is unique now: that is, if V (I) = V (J), does it follow that

I = J? The answer is unfortunately no: even in A1, we have the counterexample

V (x) = V (x2),

or in other words, the set of solutions to x = 0 is the same as that to x2 = 0.
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To fix this, we need an operation which “takes the ideal (x2) and makes it into (x)”; this is exactly the following

notion from commutative algebra:

Definition 1.4 (Radical of an ideal)

Let R be a ring. The radical of an ideal I ⊆ R, denoted
√
I, is defined by

√
I := {r ∈ R : rk ∈ I for some integer k ∈ N}.

If I =
√
I, we say the ideal I itself is radical.

Reformulating the results of Lemma 1.3 in terms of standard ideal-theoretic operations gives the following.

Lemma 1.5 (Properties of V (·))
For any ideals J, J1, J2 in K[x1, . . . , xn] we have

(a) V (
√
J) = V (J);

(b) V (J1) ∪ V (J2) = V (J1J2) = V (J1 ∩ J2);

(c) V (J1) ∩ V (J2) = V (J1 + J2).

Proof. (b) and (c) are just reformulations of Lemma 1.3, keeping in mind that
√
J1J2 =

√
J1 ∩ J2 (for (b)); and

J1 + J2 is the ideal generated by J1 ∪ J2 (for (c)).

For (a), (⊆) follows directly from Lemma 1.3(a) since
√
J ⊇ J . For the other inclusion, assume x ∈ V (J) and

f ∈
√
J . Then fk ∈ J for some k ∈ N, so that fk(x) = 0, and hence also f(x) = 0. This means that x ∈ V (

√
J).

The motivation above is important since it reflects the basis of algebraic geometry: it relates geometric objects

(varieties) to algebraic objects (ideals). In fact, the main goal of this chapter is to study this correspondence in

detail. We can now introduce an operation that does the opposite job to V :

Definition 1.6 (Ideal of a subset of An)

Let X ⊆ An be any subset. Then

I(X) := {f ∈ K[x1, . . . , xn] : f(x) = 0 for all x ∈ X}

is called the ideal of X (note that this is indeed an ideal by the discussion above).

Remark. In analogy to Lemma 1.3(a), the ideal of a subset reverses inclusions: if X1 ⊆ X2 then I(X1) ⊇ I(X2).

Note that I(X) is always radical: if fk ∈ I(X) for some f ∈ K[x1, . . . , xn] and k ∈ N then fk(x) = 0 for all

x ∈ X, so f(x) = 0 for all x ∈ X as well and thus f ∈ I(X). Hence, we have a correspondence:

{affine varieties} {radical ideals}
I(·)

V (·)

It is a central result of commutative algebra that this is actually a bijection:

Theorem 1.7 (Hilbert’s Nullstellensatz)

(a) For any affine variety X ⊆ An we have V (I(X)) = X.

(b) For any ideal J ⊴K[x1, . . . , xn] we have I(V (J)) =
√
J .

In particular, there is an inclusion-reversing bijection between the set of affine varieties of An and the set of
radical ideals in K[x1, . . . , xn].
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Proof. Three of the four inclusions of (a) and (b) are actually easy:

(a) (⊇). If x ∈ X then f(x) = 0 for all f ∈ I(X), and hence x ∈ V (I(X)).

(b) (⊇). If f ∈
√
J then fk ∈ J for some k ∈ N. It follows that fk(x) = 0 for all x ∈ V (J), hence also f(x) = 0

for all x ∈ V (J), and so f ∈ I(V (J)).

(a) (⊆). As X is an affine variety, X = V (J) for some ideal J . Then I(V (J)) ⊇
√
J ⊇ J by (b) (⊆), so taking the

zero locus we obtain V (I(V (J))) ⊆ V (J) by Lemma 1.3(a). This means exactly that V (I(X)) ⊆ X.

Only the inclusion I(V (J)) ⊆
√
J of (b) is hard; a proof of this result from commutative algebra uses the

convention that K is algebraically closed, and can be found in any book on commutative algebra. It is omitted here.

The additional bijection statement follows with the observation that
√
J = J if J is radical, and that both

operations reverse inclusions by Lemma 1.3(a) and the remark after Definition 1.6.

We dedicate the rest of the section to showcase the power of the result:

Example 1.8 (Nullstellensatz on A1)

Continuing the A1 example from above:

• Let J ⊴ K[x] be a non-zero ideal. As K[x] is a principal ideal domain, we have J = ⟨f⟩ for some
f = (x− a1)k1 · · · (x− an)kn where a1, . . . , an ∈ A1 are distinct points. The zero locus

V (J) = V (f) = {a1, . . . , an} ⊆ A1

then contains the data of the zeros of f , but no longer the multiplicities k1, . . . , kn. Consequently,

I(V (J)) =
√
J = ⟨(x− a1) · · · (x− an)⟩

is just the ideal of all polynomials vanishing at a1, . . . , an.

• If we had not assumed K to be algebraically closed, the Nullstellensatz does not hold even in simple
examples: the prime (and hence radical) ideal J = ⟨x2 + 1⟩⊴ R[x] has empty zero locus in A1

R, so

I(V (J)) = I(∅) = R[x] ̸= J =
√
J.

Example 1.9 (Maximal ideals)

The ideal J = ⟨x1− a1, . . . , xn− an⟩⊴K[x1, . . . , xn] is maximal since K[x1, . . . , xn]/J ∼= K is a field, and hence
also radical. As its zero locus is V (J) = {a} for a = (a1, . . . , an), we conclude by Nullstellensatz that

I({a}) = I(V (J)) = J = ⟨x1 − a1, . . . , xn − an⟩.

In fact, points of An are clearly theminimal non-empty varieties in An, so by the inclusion-reversing property
they correspond exactly to the maximal (proper) ideals in K[x1, . . . , xn]. Hence

{points in An} ←→ {maximal ideals in K[x1, . . . , xn]}

is a bijection again.

In other word, using Nullstellensatz we are able to deduce:

! Keypoint

Every maximal ideal of K[x1, . . . , xn] is of the form ⟨x1 − a1, . . . , xn − an⟩ (for K algebraically closed).

Again if K is not algebraically closed then this is not true, for example J = ⟨x2 + 1⟩ is maximal in R[x].
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We might also translate properties of V (·) in Lemma 1.5 to corresponding properties of I(·):

Lemma 1.10 (Properties of I(·))
For any affine varieties X1 and X2 in An we have

(a) I(X1 ∪X2) = I(X1) ∩ I(X2);

(b) I(X1 ∩X2) =
√
I(X1) + I(X2).

Proof. (a) A polynomial f ∈ K[x1, . . . , xn] is contained in I(X1 ∪X2) if and only if f(x) = 0 for all x ∈ X1 and

all x ∈ X2, which is the case if and only if f ∈ I(X1) ∩ I(X2).

(b) We have

I(X1 ∩X2) = I(V (I(X1)) ∩ V (I(X2))) = I(V (I(X1) + I(X2))) =
√
I(X1) + I(X2),

where the second equality comes from Lemma 1.5(c) and the others come from Nullstellensatz.

As a consequence of the Nullstellensatz, we can also deduce a generalisation of the fact that any non-constant

univariate polynomial has a zero over an algebraically closed field:

Proposition 1.11 (Weak Nullstellensatz)

Let J ⊴K[x1, . . . , xn] be an ideal. If J ̸= K[x1, . . . , xn] then J has a zero, i.e. V (J) ̸= ∅.

Proof. If not then
√
J = I(V (J)) = I(∅) = K[x1, . . . , xn] by Nullstellensatz, so 1 ∈

√
J and 1 ∈ J , contradiction.

Nullstellensatz also provides a trick to calculate radicals of polynomial ideals:

Example 1.12

Consider the ideal J = ⟨x3 − y6, xy − y3⟩⊴ C[x, y]. To find its radical, we note that

x3 − y6 = (x− y2)(x2 + xy2 + y4) and xy − y3 = y(x− y2).

Hence (x, y) ∈ V (J) is equivalent to either x = y2 or (x, y) = (0, 0). In any case x = y2, so we conclude that

V (J) = {(x, y) ∈ C2 : x = y2}

which clearly has ideal ⟨x− y2⟩. In other words,
√
J = I(V (J)) = ⟨x− y2⟩.

Another easy consequence is that polynomials and polynomial functions on An agree. This motivates the following

discussion on coordinate rings.

Motivation

If f, g ∈ K[x1, . . . , xn] are two polynomials defining the same function on An, i.e. f(x) = g(x) for all x ∈ An

then
f − g ∈ I(An) = I(V (0)) =

√
⟨0⟩ = ⟨0⟩

and hence f = g as polynomials. So K[x1, . . . , xn] can be thought of as the ring of polynomial functions on An.

It is easy to generalise this idea to an affine variety X ⊆ An: Two polynomials f, g ∈ K[x1, . . . , xn] define the

same polynomial function on X if and only if f − g ∈ I(X). Or in other words, the natural surjection

K[x1, . . . , xn]→ ring of polynomial functions on X

has kernel I(X), so the quotient ring K[x1, . . . , xn]/I(X) is isomorphic to the ring of polynomial functions on X.

7
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Let’s make this into a precise definition:

Definition 1.13 (Polynomial functions and coordinate rings)

Let X ⊆ An be an affine variety. A polynomial function on X is a map X → K of the form x 7→ f(x) for
some f ∈ K[x1, . . . , xn].

The ring of all polynomial functions on X is called the coordinate ring A(X) of the affine variety X. By
above, it is isomorphic to the quotient ring

A(X) ∼= K[x1, . . . , xn]/I(X).

Remark. Note that the coordinate ring is not just a ring, but also a K-algebra (i.e. also an K-vector space such

that its ring multiplication is K-bilinear). In fact, in the following we will often consider A(X) as a K-algebra,

despite its common name “coordinate ring”.

Using coordinate rings, we can define the concepts introduced so far in a relative setting, i.e. consider zero loci

of ideals in A(Y ) and varieties contained in Y for a fixed ambient affine variety Y that is not necessarily An.

Definition 1.14 (Relative version of V (·) and I(·))
Let Y ⊆ An be a fixed affine variety.

(a) For a subset S ⊆ A(Y ) of polynomial functions on Y we define the zero locus as

V (S) := VY (S) := {x ∈ Y : f(x) = 0 for all f ∈ S} ⊆ Y.

The subsets that are of this form are precisely the affine varieties contained in Y , so they are called the
affine subvarieties of Y .

(b) For a subset X ⊆ Y the ideal of X in Y is defined to be

I(Y ) := IY (X) := {f ∈ A(Y ) : f(x) = 0 for all x ∈ X}⊴A(Y ).

Note that this is completely analogous to the definitions of V (·) and I(·) in the ambient space An. With essentially

the same arguments as before, all results in this chapter could be considered in the relative setting:

• In the same way as in Definition 1.13, we see that A(X) ∼= A(Y )/IY (X) for any affine subvariety X of Y .

• (Relative Nullstellensatz) As in Proposition 1.7, we have VY (IY (X)) = X for any affine subvariety X of Y

and IY (VY (J)) =
√
J for any ideal J ⊴A(Y ), giving rise to a bijection

{affine subvarieties of Y } ←→ {radical ideals in A(Y )}.

• With the same proofs, the properties of V (·) of Lemma 1.5 and the properties of I(·) of Lemma 1.10 hold in

the relative setting as well.

1.3 The Zariski Topology

We proceed by endowing a topological structure on every variety V . Since our affine varieties all live in An, all

we have to do is put a suitable topology on An, and then just view V as a subspace. However, rather than putting

the standard Euclidean topology on An, we put a much more bizarre topology.

Definition 1.15 (Zariski topology)

We define the Zariski topology on An to be the topology whose closed sets are those of the form

V (I) where I ⊆ K[x1, . . . , xn].

Note that this is indeed a topology by Lemma 1.3.

8
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The Zariski topology on any affine variety X ⊆ An is then the subspace topology on X, i.e. the closed sets are of

the form X ∩ Y where Y is closed in An. This agrees with the topology where the closed sets are affine subvarieties

of X, i.e. the topology whose closed sets are of the form

V (I) where I ⊆ A(X),

since the affine varieties of X are precisely the affine varieties contained in X, and the intersection of two affine

varieties is again an affine variety.

Example 1.16 (Zariski topology on An)

Let us determine the open sets of A1 and A2:

• The affine varieties of A1 are either A1 itself or a finite set (including ∅). Thus, the open sets of A1 are ∅
and A1 minus a finite collection (possibly empty) of points.

Thus, a picture of a “typical” open set in A1 might be

A1

i.e. it is everything except a few marked points.

• Similarly, in A2, the non-trivial closed sets are going to consist of finite unions of

– closed curves, like V (y − x2), and
– single points, like V (x− 3, y − 4).

Of course, the entire space A2 and the empty set ∅ are closed sets. So the open sets of A2 are the entire
plane minus a finite collection of points and one-dimensional curves.

Example 1.17 (Zariski topology on an affine variety)

Let X = V (y − x2) ⊆ A2 be a parabola, and let U = V \ {(1, 1)}. We claim U is open in V :

x

y

V (y − x2)

A2

Indeed, Ũ = A2 \{(1, 1)} is open in A2 (since it is the complement of the closed set V (x−1, y−1)), so U = Ũ ∩V
is open in V . Note that on the other hand the set U is not open in A2.

Compared to the classical metric topology, the Zariski topology is certainly unusual; intuitively, we can say that:

! Keypoint

The non-empty Zariski open sets are huge.

This is an important difference between the two topologies. To be more precise,

• In the standard Euclidean topology, when we say “in an open neighbourhood of point p”, one think of this as

saying “in a small region around p”.

9
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• In the Zariski topology, saying something is true “in an open neighbourhood of point p” should be thought of

as saying it is true “for virtually all points, other than those on certain curves”.

Nonetheless, it will still be helpful to draw open neighbourhoods as circles in pictures that follow.

Example 1.18 (Some final bizarreness of the Zariski topology)

• (Continuity) If f : A1 → A1 is any injective map, then f is automatically continuous since pre-images of
finite subsets of A1 under f are again finite.

But this statement is essentially useless, since we will not define morphisms of affine varieties as just being
continuous maps in the Zariski topology. In fact, this example gives us a hint that we should not do so.

• (Product topology) The Zariski topology of an affine product variety X × Y is not the product topology:
for example, the subset V (x− y) = {(a, a) : a ∈ K} ⊆ A2 is closed in the Zariski topology, but not in the
product topology of A1 × A1 as it is not of the form

finite set× finite set, finite set× A1, or A1 × A1.

1.4 Irreducibility and connectedness

Let us now start with the discussion of topological concepts that are actually useful in the Zariski topology. The

first one concern components of an affine variety.

Definition 1.19 (Irreducible and connected spaces)

Let X be a topological space. We say

(a) X is reducible if it can be written as X = X1∪X2 for closed subsets X1, X2 ⊂ X. Otherwise X is called
irreducible;

(b) X is disconnected if it can be written as X = X1 ∪X2 for closed subsets X1, X2 ⊂ X with X1 ∩X2 = ∅.
Otherwise X is called connected.

Caution: Note the strict inclusions of X1, X2 in both definitions.

Hence, for instance, the irreducible varieties of A1 are ∅, single points V (x−a), and the entire line A1. As another

example, the union of two axes V (xy) ⊂ A2 is reducible since it is the union of, well, the two axes V (x) and V (y),

but it is connected since it is impossible to write it as a union of two disjoint closed subsets of A2.

We can also characterise these two notions algebraically in the Zariski topology:

Proposition 1.20

Let X be a disconnected affine variety, with X = X1 ∪X2 for two disjoint closed subsets X1, X2 ⊂ X. Then

A(X) ∼= A(X1)×A(X2).

Proof. By Lemma 1.10, as X1 ∪X2 = X we obtain in A(X)

I(X1) ∩ I(X2) = I(X1 ∪X2) = I(X) = {0}.

On the other hand, from X1 ∩X2 = ∅ we have in A(X)√
I(X1) + I(X2) = I(X1 ∩X2) = I(∅) = ⟨1⟩,

and thus also I(X1) + I(X2) = ⟨1⟩. So by the Chinese Remainder Theorem, we conclude that

A(X) ∼= A(X)/I(X1)×A(X)/I(X2),

which by the relative definition of coordinate rings is exactly the statement of the proposition.

10
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The following appears much more frequently than the result above:

Proposition 1.21

A non-empty affine variety X is irreducible if and only if A(X) is an integral domain.

Proof. As X is non-empty, its coordinate ring A(X) is not the zero ring.

(⇒). Assume that A(X) is not an integral domain, i.e. there are non-zero f1, f2 ∈ A(X) such that f1f2 = 0.

Then X1 = V (f1) and X2 = V (f2) are closed, not equal to X (since f1 and f2 are non-zero), and

X1 ∪X2 = V (f1) ∪ V (f2) = V (f1f2) = V (0) = X.

Hence X is reducible.

(⇐). Assume that X is reducible, with X = X1 ∪ X2 for closed subsets X1, X2 ⊂ X. By the bijection of the

relative Nullstellensatz, I(Xi) ̸= {0} in A(X) for i = 1, 2, and so we can choose non-zero fi ∈ I(Xi). Then f1f2

vanishes on X1 ∪X2 = X. Hence f1f2 = 0 ∈ A(X), i.e A(X) is not an integral domain.

Motivation

Proposition 1.21 can be extended further to characterise irreducible varieties X with their ideals. Recall that
A(X) ∼= K[x1, . . . , xn]/I(X) is an integral domain if and only if I(X) is a prime ideal. Hence, the bijection of
the Nullstellensatz restricts to a bijection

{non-empty irreducible affine varieties in An} ←→ {prime ideals in K[x1, . . . , xn]}.

Of course, the relative version holds too: the set of irreducible affine subvarieties of Y bijects with the set of
prime ideals in A(Y ) for any affine variety Y .

This suggests that irreducibility is more useful in the Zariski topology. Thus we now want to decompose an affine

variety into finitely many irreducible spaces. In fact, this works for a much larger class of topological spaces:

Definition 1.22 (Noetherian topological spaces)

A topological space X is called Noetherian if there is no infinite strictly decreasing chain

X0 ⊃ X1 ⊃ X2 ⊃ · · ·

of closed subsets of X.

As expected, the Zariski topology falls into this class of topological space:

Lemma 1.23

Any affine variety is a Noetherian topological space.

Proof. Let X be an affine variety. By the relative Nullstellensatz, an infinite decreasing chain X0 ⊃ X1 ⊃ X2 ⊃ · · ·
of affine subvarieties of X would give rise to an infinite increasing chain

I(X0) ⊂ I(X1) ⊂ I(X2) ⊂ · · ·

of ideals in A(X), which is impossible since A(X) is a Noetherian ring by Hilbert’s Basis Theorem.

Intuitively, one can guess that the following is true as well:

Lemma 1.24 (Subspaces of Noetherian spaces are Noetherian)

Let A be a subset of a Noetherian topological space X, then A is also Noetherian.

11
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Proof. Suppose not, then we have an infinite strictly decreasing chain of closed subsets of A, which by definition of

the subspace topology we can write as

A ∩X0 ⊃ A ∩X1 ⊃ A ∩X2 ⊃ · · ·

for closed subsets X0, X1, X2, . . . of X. Then

X0 ⊇ X0 ∩X1 ⊇ X0 ∩X1 ∩X2 ⊇ · · ·

is a decreasing chain of closed subsets of X. In contradiction to our assumption, it is also strictly decreasing, since

X0 ∩ · · · ∩Xk = X0 ∩ · · · ∩Xk+1 for some k ∈ N would imply A ∩Xk = A ∩Xk+1 by intersecting with A.

Combining the two lemmas, we see that any subset of an affine variety is a Noetherian topological space.

We can now prove the desired property of Noetherian spaces: that it has a decomposition into irreducible spaces.

Proposition 1.25 (Irreducible decomposition of Noetherian spaces)

Every Noetherian topological spaceX can be written as a finite unionX = X1∪· · ·∪Xr of non-empty irreducible
closed subsets. If one assumes that Xi ̸⊆ Xj for all i ̸= j, then X1, . . . , Xr are unique (up to permutation).
They are called the irreducible components of X.

Proof. For X = ∅ the statement is obvious (with r = 0).

Otherwise, to prove existence, suppose there is a topological spaceX for which the statement is false. In particular,

X is reducible, hence X = X1 ∪X ′
1 for X1, X

′
1 closed in X. Moreover, the statement of the proposition has to be

false for at least one of these two subsets, say X1. Continuing this construction, one arrives at an infinite chain

X ⊃ X1 ⊃ X2 ⊃ · · · of closed subsets, contradiction.

To show uniqueness, assume that we have two decompositions

X = X1 ∪ · · · ∪Xr = X ′
1 ∪ · · · ∪X ′

s.

Then for any i ∈ {1, . . . , r} we have Xi ⊆
⋃

j X
′
j , so Xi =

⋃
j(Xi ∩X ′

j). But Xi is irreducible, so Xi = Xi ∩X ′
j , i.e.

Xi ⊆ X ′
j for some j. In the same way we have X ′

j ⊆ Xk for some k, so Xi ⊆ X ′
j ⊆ Xk. By assumption this is only

possible for i = k, and consequently Xi = X ′
j .

Hence {X1, . . . , Xr} = {X ′
1, . . . , X

′
s}, which means that the two decompositions agree.

In particular, it is often useful to find the irreducible components of an affine variety:

Example 1.26 (Computation of irreducible components)

Consider the affine variety X = V (x1 − x2x3, x1x3 − x22) ⊆ A3
C. Note that

(x1, x2, x3) ∈ X ⇐⇒ x1 = x2x3 and x1x3 = x22

⇐⇒ x1 = x2x3 and x2x
2
3 = x22

⇐⇒ x1 = x2x3 and (x2 = 0 or x23 = x2)

⇐⇒ x1 = x2 = 0 or (x1 = x33 and x2 = x23).

In other words, X = X1 ∪X2 where X1 = V (x1, x2) and X2 = V (x1 − x33, x2 − x23). We claim that X1, X2 are
irreducible, so they are the irreducible components of X. Indeed,

A(X1) = C[x1, x2, x3]/⟨x1, x2⟩ ∼= C[x3]
A(X2) = C[x1, x2, x3]/⟨x1 − x33, x2 − x23⟩ ∼= C[x33, x23, x3] = C[x3]

both of which are integral domains. Thus by Proposition 1.21, X1 and X2 are irreducible, as desired.

12
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Remark. In fact, the component X2 is called the twisted cubic:

Note that it is cut out by the surfaces V (x1 − x33) and V (x2 − x23), as shown in the figure.

Remark. The irreducible decomposition of an affine variety X ⊆ An can also be computed from the primary

decomposition of its ideal: If

I(X) = Q1 ∩ · · · ∩Qr

is a primary decomposition of I(X) with Qi primary, then by Nullstellensatz

X = V (I(X)) = V (Q1) ∪ · · · ∪ V (Qr) = V (P1) ∪ · · · ∪ V (Pr)

where Pi =
√
Qi are prime ideals. Note that all varieties V (Pi) in this union are irreducible. Keeping only the

maximal varieties among them we obtain the irreducible decomposition of X. They correspond exactly to the

minimal prime ideals in A(X), so we have an additional bijection:

{irreducible components of X} ←→ {minimal prime ideals in A(X)}.

We end the section by deploying the idea of irreducibility to show a few related results. Recall that we have

already seen that open subsets tend to be very “big” in the Zariski topology. Here is the precise statements:

Lemma 1.27

Open subsets of irreducible spaces are dense.

Proof. There are multiple ways to do this; we will show that the closure U of any non-empty open subset U of

an irreducible topological space X is all of X. This is easy: if Y ⊆ X is any closed subset containing U then

X = Y ∪ (X \ U), and since X is irreducible and X \ U ̸= X we must have Y = X.

We end the section by the following result that comes up later:

Lemma 1.28

A is irreducible if and only if A is irreducible.

Proof. (⇒). Suppose A is reducible, i.e. A = A1 ∪A2 for A1, A2 closed in A. Then

A = A ∩A = A ∩ (A1 ∪A2) = (A ∩A1) ∪ (A ∩A2).

By definition of the subspace topology, A ∩ Ai is closed in A for i = 1, 2. If A ∩ Ai = A then A ⊆ Ai, so

A ⊆ Ai = Ai ⊆ A and thus A = Ai, contradiction. This shows that A is reducible. (⇐) is similar.

13
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1.5 Dimension

Developing a good theory of dimension is a challenging problem in any branch of mathematics, and algebraic

geometry is no exception.

Motivation

Of course, at least in the case of complex varieties, we have a geometric idea what the dimension should be: the
number of coordinates that you need to describe X locally around any point. Some intuitive examples:

dimA2 = 2 dimV (x2 + y2 − 1) = 1 dimV (xy, xz) = 2

The last variety has two components: V (x) and V (y, z). In this case, we will soon see that its dimension should
be defined as the maximal dimension of the components.

The standard definition of dimension that we will give here uses only the language of topological spaces:

Definition 1.29 (Dimension and codimension)

Let X be a non-empty topological space.

(a) The dimension dimX ∈ N ∪ {∞} is the supremum over all n ∈ N such that there is a chain

∅ ≠ Y0 ⊂ Y1 ⊂ · · · ⊂ Yn ⊆ X

of irreducible closed subsets Y1, . . . , Yn of X, where there are n strict inclusions.

(b) If Y ⊆ X is a non-empty irreducible closed subset of X the codimension codimX Y of Y in X is again
the supremum over all n such that there is a chain

Y ⊆ Y0 ⊂ Y1 ⊂ · · · ⊂ Yn ⊆ X

of irreducible closed subsets Y1, . . . , Yn of X containing Y .

To avoid confusion, we will always denote the dimension of a K-vector space V by dimK V .

According to the above idea, one should imagine each Yi as having dimension i in a maximal chain as in Definition

1.29(a), so that finally dimX = n. Similarly, each Yi in Definition 1.29(b) should have dimension i + dimY in a

maximal chain, so that n = dimX − dimY .

Example 1.30

We can verify some of our intuitions:

• The affine space A1 has dimension 1, since the maximal chains are exactly

∅ ≠ {a} ⊂ A1

for any point a ∈ A1. The codimension of {a} in A1 is 1.

• However, it is not entirely obvious that dimAn = n, but at least it is easy to see that dimAn ≥ n, by
considering an increasing chain of linear subvarieties.

14
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Caution: One might be tempted to think that the Noetherian condition ensures that dimX is always finite. This is

not true however: If we equip the natural numbers X = N with the topology in which (except ∅ and X) exactly the

subsets Yn := {0, . . . , n} for n ∈ N are closed, then X is Noetherian, but has chains Y0 ⊂ Y1 ⊂ · · · ⊂ Yn of non-empty

irreducible closed subsets of arbitrary length.

However, for affine varieties infinite dimensions cannot occur, since in this case the two notions reduce to two

algebraic concepts:

Lemma 1.31 (Dimension and codimension of affine varieties)

Let Y be a non-empty irreducible subvariety of an affine variety X.

(a) The dimension dimX of X is equal to the Krull dimension of the coordinate ring A(X).

(b) The codimension codimX Y of Y in X is equal to the height of the prime ideal I(Y ) in A(X).

In particular, dimensions and codimensions of (irreducible) affine varieties are always finite.

Proof. Both statements follow from the order-reversing property of I(·). The dimension and codimension must be

finite since A(X) is a finitely generated K-algebra.

In fact, this correspondence allows us to transfer many results on Krull dimensions immediately to statements

on dimensions of affine varieties, including dimAn = n. We will list them only for irreducible varieties, since we will

quickly see that the general case follows easily.

Proposition 1.32 (Properties of dimension)

Let X and Y be non-empty irreducible affine varieties.

(a) We have dim(X × Y ) = dimX + dimY (note that X × Y is also an affine variety). In particular,
dimAn = n.

(b) If Y ⊆ X then dimX = dimY + codimX Y . In particular, codimX{a} = dimX for every point a ∈ X.

(c) If f ∈ A(X) is non-zero then every irreducible component of V (f) has codimension 1 in X (and hence
dimension dimX − 1 by (b)).

We omit the proof here since it is purely algebraic, and the tools used (Noether normalisation lemma and Krull’s

prinicpal ideal theorem) are out of the scope of this notes.

Example 1.33

Consider again the affine varietyX = V (y−x2) ⊆ A2
C. Then, as expected,

we have:

• X is irreducible by Proposition 1.21 since its coordinate ring

A(X) = C[x, y]/(y − x2) ∼= C[x]

is an integral domain.

• X has dimension 1 by Proposition 1.32(c), since it is the zero locus
of one non-zero polynomial in A2, and dimA2 = 2. x

y

V (y − x2)

A2

Dimensions often behave nicely; for instance, if A is a subset of a topological space X, then dimA ≤ dimX. The

proof is similar to that of Lemma 1.24: If Y0 ⊂ Y1 ⊂ · · · ⊂ Yn ⊆ A is a chain of irreducible closed subsets of A,

then by definition Yi = A ∩Xi for some closed subsets Xi in X. These Xi must be irreducible since so is Yi. Hence

X0 ∩ · · · ∩Xn ⊂ X0 ∩ · · · ∩Xn−1 ⊂ · · · ⊂ X0 ⊆ X is a chain of irreducible closed subsets of X, i.e. dimX ≥ n.
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Recall also that we have only showed properties of dimensions for irreducible affine varieties. The following

explains why:

Lemma 1.34

Let X be a Noetherian topological space.

(a) If X = X1 ∪ · · · ∪Xr is the irreducible decomposition of X, then

dimX = max{dimX1, . . . ,dimXr}.

(b) We always have dimX = sup{codimX{a} : a ∈ X}.

Proof. The proofs of both statements go similarly:

(a) (≤). Assume that dimX ≥ n, so there is chain Y0 ⊂ · · · ⊂ Yn of non-empty irreducible closed subvarieties of

X. Then

Yn = (Yn ∩X1) ∪ · · · ∪ (Yn ∩Xr)

is a union of closed subsets. As Yn is irreducible, we must have Yn = Yn ∩Xi and hence Yn ⊂ Xi for some i.

But then Y0 ⊂ · · · ⊂ Yn is a chain of non-empty irreducible closed subsets in Xi, and hence dimXi ≥ n.

(≥). Let max{dimX1, . . . ,dimXr} ≥ n. Then there is a chain of non-empty irreducible closed subsets Y0 ⊂
· · · ⊂ Yn in some Xi. But this chain is also in X, and hence dimX ≥ n.

(b) (≤) If dimX ≥ n there is a chain Y0 ⊂ · · · ⊂ Yn of non-empty irreducible closed subsets of X. For any a ∈ Y0
this chain then shows that codimX{a} ≥ n.

(≥). If codimX{a} ≥ n for some a ∈ X there is a chain {a} ⊆ Y0 ⊂ · · · ⊂ Yn of non-empty irreducible closed

subsets of X, which also shows that dimX ≥ n.

Pictorially, using the example from the motivation above, we consider X = V (xy, xz):

X0 ⊂ X1

Y0

⊂ ⊂
Y1 Y2

Here dimX = 2, as mentioned before, since the maximum chain of irreducible closed subvarieties occurs in the

plain V (x). As for (b), the codimension of the point Y0 is 2, whereas the codimension of the point X0 is 1, as

illustrated by the chains in the picture.
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As a result, the correct way to think about codimensions is:

! Keypoint

The codimension of a point a ∈ X is the local dimension of X at a.

Hence Proposition 1.32(b) can also be interpreted as saying that the local dimension of an irreducible variety is

the same at every point.

In practice, we will usually be concerned with affine varieties all of whose components have the same dimension.

These spaces have special names we shall introduce now. Note however that these terms are not used consistently

throughout the literature.

Definition 1.35 (Pure-dimensional spaces)

A Noetherian topological space X is said to be of pure dimension n if every irreducible component of X has
dimension n.

In particular, an affine variety is called

• a curve if it is of pure dimension 1;

• a surface if it is of pure dimension 2;

• a hypersurface in a pure-dimensional affine variety Y if it is an affine subvariety of Y of pure dimension
dimY − 1.

We have seen in Proposition 1.32(c) that the zero locus of a single polynomial in an irreducible affine variety is

a hypersurface. Let us now address the opposite question: is every irreducible hypersurface of a given irreducible

affine variety X the zero locus of a single polynomial?

Surprisingly, this depends on a rather subtle algebraic property of A(X), based on the following result from

commutative algebra:

Proposition 1.36

Let R be a Noetherian integral domain (e.g. A(X) where X is an irreducible affine variety). Then R is a unique
factorisation domain if and only if every prime ideal of height 1 in R is principal.

Proof. (⇒). Let P be a prime ideal of height 1 in R. We can then choose a non-zero element f ∈ P ; since P ̸= ⟨1⟩
it will also not be a unit.

As R is a unique factorisation domain, we can write

f = f1f2 · · · fk

for some prime elements f1, . . . , fk ∈ R. Since P is a prime ideal we must then have fi ∈ P for some i. We thus

obtain a chain {0} ⊂ ⟨fi⟩ ⊆ P of prime ideals. But as the height of P is 1 this requires P = ⟨fi⟩.

(⇐). We first decompose any non-zero non-unit f ∈ R as a product of irreducible elements since R is Noetherian:

Otherwise f cannot be irreducible, so we must have a decomposition f = f1f
′
1 into non-units, of which at least one

factor, say f1, is not a product of irreducible elements. Continuing this process, we obtain an infinite chain

⟨f⟩ ⊂ ⟨f1⟩ ⊂ ⟨f2⟩ ⊂ · · ·

in contradiction to R being Noetherian.

Now it suffices to show that every irreducible element f ∈ R is prime. Firstly choose a minimal prime ideal P

containing f . By Krull’s principal ideal theorem, htP = 1, so by assumption P is principal, i.e. P = ⟨g⟩ for some

prime g. But g divides f and f is irreducible, so f and g agree up to units. Hence f is prime as well.
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Translating this to our case of affine varieties, if X is an irreducible hypersurface in An, the I(X)⊴K[x1, . . . , xn]

is a prime ideal of codimension 1. As the polynomial ring is a unique factorisation domain, I(X) = ⟨f⟩ for an

irreducible polynomial f by the above proposition.

Even if X is not irreducible, we can apply the same argument to each component of its irreducible decomposition

X = X1 ∪ · · · ∪Xk to obtain I(Xj) = ⟨fj⟩ for some fj ∈ K[x1, . . . , xn] and all j. Then I(X) = ⟨f⟩, which is again

principal. In summary:

! Keypoint

X ⊆ An is an affine hypersurface if and only if I(X) = ⟨f⟩.

This f is unique up to units, so we can associate its degree natually to X:

Definition 1.37 (Degree of an affine hypersurface)

Let X be an affine hypersurface in An, with ideal I(X) = ⟨f⟩. Then the degree of f is also called the degree
of X, denoted degX.

The general case of hypersurfaces as subvarieties in a fixed affine variety Y is much harder, since it depends on

whether A(Y ) is a unique factorisation domain. We give one example here in which this is not the case (so there is

an irreducible codimension-1 hypersurface whose ideal is not principal) to end the section:

Example 1.38

Let R = K[x, y, z, w]/⟨xy − zw⟩. Then:

• R is an integral domain of dimension 3: one can show that xy− zw is an irreducible element by casework.
Now as K[x, y, z, w] is a domain, we have in general that

ht I + dim(K[x, y, z, w]/I) = dimK[x, y, z, w] = 4.

for any ideal I ⊴ K[x, y, z, w]. Putting I = ⟨xy − zw⟩ (which has height 1 by Krull’s principal ideal
theorem), we have dimR = 3.

• x, y, z, w are irreducible but not prime in R: if x = rs for r, s ∈ R, then one of r, s must be degree 1 and
the other one degree 0. But degree 0 polynomials are units, so x must be irreducible.

On the other hand,
R/⟨x⟩ ∼= K[x, y, z, w]/⟨x, xy − zw⟩ ∼= K[y, z, w]/⟨z, w⟩

which is not an integral domain. Thus x is not prime, and similarly for y, z, w.

Remark. In particular R is not a unique factorisation domain.

• ⟨x, z⟩ is a prime ideal of height 1 in R that is not principal: clearly ⟨x, z⟩ is prime since

R/⟨x, z⟩ ∼= K[x, y, z, w]/⟨x, z, xy − zw⟩ ∼= K[y, w].

Now using the result from above again (since R is a domain) we have

ht⟨x, z⟩ = dimR− dim(R/⟨x, z⟩) = 3− 2 = 1,

and finally ⟨x, z⟩ ̸= ⟨f⟩ for any f or else f divides x and z, which are irreducible and non-associated. So
f must be an unit, but ⟨x, z⟩ ≠ R, contradiction.

Hence, the plane V (x, z) is a hypersurface in the affine variety X = V (xy−zw) whose ideal cannot be generated
by one element in A(X).
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2 Sheaves & Morphisms

Having defined affine varieties, the next goal must be to say what kind of maps between them we want to consider

as morphisms, i.e. the “nice” maps. This chapter answers this question.

2.1 Regular functions

The easiest case of maps is the so-called regular functions, i.e. the maps to the ground field K = A1.

Motivation

So what kind of maps do we want to consider on an affine variety X? Here is the thought process:

• Of course, any function in A(X) should be considered as “nice”.

• But, analogous to continuous or differentiable functions, we should not aim for a definition of functions on
all of X, but also on an arbitrary open subset U of X.

This allows us to consider quotients g
f of polynomial functions f, g ∈ A(X) with f ̸= 0 as well, since we

can exclude the zero set V (f) from the domain of definition.

• But taking only rational functions is too restrictive: the problem would be that it is not local. In the
case of continuous or differentiable function, the condition can be checked at every point. Being a quotient
is however not a condition of this type – we would have to find one global representation as a quotient.

The way out is to consider functions that are “locally” a quotient, which gives the desired definition:

Definition 2.1 (Regular functions)

Let X be an affine variety, and let U be an open subset of X. A regular function on U is a map ϕ : U → K
with the following property: For every a ∈ U there are polynomial functions fa, ga ∈ A(X) with fa(x) ̸= 0 and

ϕ(x) =
ga(x)

fa(x)

for all x in an open subset Ua with a ∈ Ua ⊆ U . The set of all such regular functions on U will be denoted
OX(U); it is clearly a K-algebra.

Remark. We will usually write the condition “ϕ(x) = ga(x)
fa(x)

for all x ∈ Ua” simply as “ϕ = ga
fa

on Ua”.

Note that fa and ga depends on the choice of a. Thus:

! Keypoint

ϕ is regular on U if it is locally a rational function.

This definition is misleadingly complicated, and the examples should illuminate it significantly. Firstly, most of

the time we will be able to find a “global” representation, and we will not need to fuss with the a’s. For example:

Example 2.2 (Regular functions)

• Any function f ∈ A(X) is clearly regular, since we can take fa = 1, ga = f for every a. So A(X) ⊆ OX(U)
for any open set U .

• Let X = A1, U = X \ {0}. Then 1/x ∈ OX(U) is regular on U .

• Let X = A1, U = X \ {1, 2}. Then
1

(x− 1)(x− 2)
∈ OX(U)

is regular on U .
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The “local” clause with a’s is still necessary, though:

Example 2.3 (Local ̸= global quotients)

Consider the affine variety
X = V (xy − zw) ⊆ A4

and the open set U = X \ V (y, w) = {(x, y, z, w) ∈ A4 : y ̸= 0 or w ̸= 0}. Then

ϕ : U → K, (x, y, z, w) 7→

{
x
w if w ̸= 0
z
y if y ̸= 0

is a regular function on U :

• It is well-defined since the defining equation for X implies x/w = z/y whenever y ̸= 0 and w ̸= 0.

• It is regular since it is obviously locally a quotient of polynomials.

But none of the two representations can be used on all of U , since we run into divide-by-zero issues. Algebraically,
this just exploits the fact that

A(X) = K[x, y, z, w]/⟨xy − zw⟩

is not a unique factorisation domain, as we have seen in Example 1.38.

As a first result, let us prove the expected statement that zero loci of regular functions are always closed in their

domain of definition.

Lemma 2.4 (Zero loci of regular functions are closed)

Let U be an open subset of an affine variety X, and let ϕ ∈ OX(U) be a regular function on U . Then

V (ϕ) := {x ∈ U : ϕ(x) = 0}

is closed in U .

Proof. By definition any point a ∈ U has an open neighbourhood Ua ⊆ U and fa, ga ∈ A(X) (with fa nowhere zero

on Ua) for which ϕ = ga
fa

on Ua. So the set

Ua \ V (ϕ) = {x ∈ Ua : ϕ(x) ̸= 0} = Ua \ V (ga)

is open in X, and hence so is their union over all a, which is just U \V (ϕ). This means that V (ϕ) is closed in U .

A consequence of this lemma is the so-called identity theorem:

Corollary 2.5 (Identity theorem for regular functions)

Let U ⊆ V be non-empty open subsets of an irreducible affine variety X. If ϕ1, ϕ2 ∈ OX(V ) are two regular
functions on V that agree on U , then they must agree on all of V .

Proof. The locus V (ϕ1 − ϕ2) contains U and is closed in V , so it contains the closure U in V . But by Lemma 1.27

V = X, which is irreducible, so V is also irreducible by Lemma 1.28. But then again by Lemma 1.27, U = V , so

ϕ1 = ϕ2 on V .

Remark. This statement is not really surprising since the open subsets in the Zariski topology are so big; but the

exact same statement is also true for holomorphic functions in Cn which has the Euclidean topology. In this case it

is an actual theorem since the open subset U can be very small.

Still this is an example of a statement that is true in literally the same way in both algebraic and complex

geometry, although the topology are very different a priori.
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Let us now go ahead and compute the K-algebras OX(U) in some cases. A particular important result can be

obtained for the following special case:

Definition 2.6 (Distinguished open subsets)

For an affine variety X and a polynomial function f ∈ A(X) on X we call

D(f) := X \ V (f) = {x ∈ X : f(x) ̸= 0}

the distinguished open subset of f in X.

From Vakil, he suggests remembering the notationD(f) as “doesn’t-vanish set”. Similar to V (·), the distinguished
open subsets behave nicely with respect to intersections and unions:

• For any f, g ∈ A(X) we have D(f) ∩D(g) = D(fg), since f(x) ̸= 0 and g(x) ̸= 0 is equivalent to (fg)(x) ̸= 0

for all x ∈ X. In particular, finite intersections of distinguished open subsets are again distinguished open.

• Any open subset U ⊆ X is a finite union of distinguished open subsets: By definition of the Zariski topology

it is the complement of an affine variety V (f1, . . . , fk), hence

U = X \ V (f1, . . . , fk) = X \ (V (f1) ∩ · · · ∩ V (fk)) = D(f1) ∪ · · · ∪D(fk).

We can therefore think of the distinguished open subsets as the “smallest” open subsets of X – in topology, the

correct notion for this is that they form a basis of the Zariski topology on X.

Theorem 2.7 (Regular functions on distinguished open subsets)

Let X be an affine variety, and let f ∈ A(X). Then

OX(D(f)) =

{
g

fn
: g ∈ A(X), n ∈ N

}
.

In particular,

• setting f = 1 we see thatOX(X) = A(X), i.e. the regular functions on all ofX are exactly the polynomials;

• on a distinguished open subset a regular function is always globally the quotient of two polynomials.

Proof. (⊇) is obvious, since every function of the form g
fn for g ∈ A(X) and n ∈ N is clearly regular on D(f).

For (⊆), let ϕ : D(f)→ K be a regular function. By definition we obtain for every a ∈ D(f) a local representation

ϕ = ga
fa

for some fa, ga ∈ A(X) which is valid on an open neighbourhood Ua of a in D(f). Now:

• After possibly shrinking Ua, we may assume that they are distinguished open subsetsD(ha) for some ha ∈ A(X)

since Ua is an union of distinguished open subsets.

• By replacing ga and fa by gaha and faha, we may assume both the numerator and denominator of ϕ (which

we will again call ga and fa) vanish on V (ha).

• Finally, this means fa vanishes on V (ha) and does not vanish on D(ha) ⊆ Ua. So ha and fa have the same

zero locus, and we can therefore assume ha = fa.

In summary we can assume that ϕ = ga
fa

on D(fa). Now we claim that in A(X) we have

gafb = gbfa for all a, b ∈ D(f) : (∗)

On D(fa)∩D(fb) these two functions agree as ϕ = ga
fa

= gb
fb

there. On X \D(fa)∩D(fb) = V (fa)∪V (fb) both sides

are zero since fa(x) = ga(x) = 0 for all x ∈ V (fa) and fb(x) = gb(x) = 0 for all x ∈ V (fb) by construction.
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Now all our open neighbourhoods cover D(f), i.e. D(f) =
⋃

a∈D(f)D(fa). Passing to the complement,

V (f) =
⋂

a∈D(f)

V (fa) = V ({fa : a ∈ D(f)}),

and thus by Nullstellensatz we have

f ∈ I(V (f)) = I(V ({fa : a ∈ D(f)})) =
√
⟨fa : a ∈ D(f)⟩.

This means that fn =
∑

a kafa for some n ∈ N and ka ∈ A(X), summing over finitely many a ∈ D(f). Setting

g :=
∑

a kaga, we then claim that ϕ = g
fn on all of D(f): for all b ∈ D(f) we have on D(fb) that ϕ = gb

fb
and

gfb =
∑
a

kagafb
(∗)
=

∑
a

kagbfa = gbf
n.

These open subsets cover D(f), so all local representations are equal to g
fn .

Note that we used Nullstellensatz again: in fact, the statement is false without the assumption of an algebraically

closed ground field, by the counterexample 1
x2+1 that is defined on all of R but not a polynomial function.

The above statement is also deeply linked to commutative algebra. Although we considered the quotients g
fn as

fractions of polynomial functions, we can now also interpret them as elements of a certain localisation:

Corollary 2.8 (Regular functions as localisations)

Let X be an affine variety, and let f ∈ A(X). Then OX(D(f)) is isomorphic (as a K-algebra) to the localisation
A(X)f of the coordinate ring A(X) at the multiplicatively closed subset {fn : n ∈ N}.

Proof. There is an obvious K-algebra homomorphism A(X)f → OX(D(f)) defined via

g

fn
7→ g

fn
.

This is in fact well-defined: if g
fn = g′

fm as formal fractions in A(X)f then fk(gfm − g′fn) = 0 in A(X) for some

k ∈ N, which means that on D(f) we have gfm = g′fn since fk ̸= 0, and thus g
fn = g′

fm as functions on D(f).

Now this homomorphism is surjective by Theorem 2.7. It is also injective: if g
fn = 0 as a function on D(f) then

g = 0 on D(f) and so fg = 0 on all of X, which means that

f(g · 1− 0 · fn) = 0 ∈ A(X)

and thus g
fn = 0

1 as formal fractions in A(X)f .

Example 2.9 (Regular functions on punctured plane A2 \ {0})
Probably the easiest case of an open subset of an affine variety that is not a distinguished open subset is the
punctured plane U = A2 \ {0} in X = A2. We claim that

OA2(A2 \ {0}) = K[x, y],

and thus OX(U) = OX(X), i.e. every regular function on U can be extended to X.

To prove the claim, let ϕ ∈ OX(U). Note that ϕ is regular on the two distinguished open subsets

D(x) = (A1 \ {0})× A1 and D(y) = A1 × (A1 \ {0})

since they are both subsets of U (in fact they cover U):
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D(x)

D(y)

Hence by Theorem 2.7 we can write ϕ = f
xm on D(x) and ϕ = g

yn on D(y) for some f, g ∈ K[x, y] and m,n ∈ N.
Of course we can assume that x ∤ f and y ∤ g.
On the intersection D(x)∩D(y) both representation of ϕ are valid, so we have fyn = gxm on D(x)∩D(y). But
the locus V (fyn − gxm) is closed, so it also contains D(x) ∩D(y) = A2. In other words,

fyn = gxm ∈ A(A2) = K[x, y].

Now if m > 0 then x must divide fyn, which is only possible if x | f as K[x, y] is a unique factorisation domain.
This is a contradiction, so m = 0. But then ϕ = f is a polynomial, as desired.

To end the section, we note that the above example can be generalised as follows: Let Y be a non-empty irreducible

subvariety of an affine variety X, and set U = X \ Y . If A(X) is a unique factorisation domain and codimX Y ≥ 2,

then OX(U) = A(X). The proof goes similar to above, except instead of x, y we have to choose f1, f2 ∈ I(Y ) using

the codimension condition.

2.2 Sheaves

We defined regular functions on an open subset U of an affine variety as set-theroetic functions from U to the

ground field K that satisfy some local property. Local constructions like this occur in many places in algebraic

geometry as well as other “topological” fields, so we spend a section to formalise the idea of sheaves.

Motivation

We consider differentiable functions on the topological space X = Rn. There are two key facts:

• On each open set U ⊂ X, we have a ring of differentiable functions, denoted by O(U), where

– addition is given by (f + g)(x) := f(x) + g(x);

– multiplication is given by (fg)(x) := f(x) · g(x).

• If we have a differentiable function on an open set, we can restrict it to a smaller open set, i.e. if U ⊂ V
then we have a “restriction map”

resV,U : O(V )→ O(U).

The restriction maps need to “naturally” commute, i.e. if U ⊂ V ⊂W , then the following commutes:

O(W ) O(V )

O(U)

resW,V

resW,U resV,U

This reads as “restricting from big to small is equal to restricting from big to medium, then to small”.
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To visualise the restriction maps, it is best to “plot” the graphs, so we obtain the following figures:

V

f ∈ O(V )

X VU

resV,U f ∈ O(U)

X

To this step, we have already defined what’s called a presheaf (the object O).

Now to proceed to the actual sheaf we need two more technical observation:

• Let f1, f2 ∈ O(U), and let Ui be open sets such that U =
⋃

i∈I Ui, i.e. {Ui} covers U . Suppose that f1
and f2 agree on each of these Ui, then they must have been the same function to begin with.

In other words, if resU,Ui
f1 = resU,Ui

f2 (or f1|Ui
= f2|Ui

) for all i, then f1 = f2.

• Suppose we have the same U and open cover as above. Let fi ∈ O(Ui) and assume they agree on the
pairwise overlaps. Then they can be “glued together” to form one differentiable function on U .

In other words, if resUi,Ui∩Uj fi = resUj ,Ui∩Uj fj for all i, j, then there is some f ∈ O(U) such that
resU,Ui f = fi.

These two observations on differentiable functions are fundamental to the nature of Rn, so they eventually
became the axioms of a sheaf as we will see later on. Intuitively, the first axiom says that there is at most one
way to glue together differentiable functions, and the second says there is at least one way to glue.

The major takeaway from this motivation is as follows:

! Keypoint

The entire example would have worked with continuous functions, or regular functions, or just plain functions.

So these classes of “nice” functions share common properties, and indeed these are all generalised to the properties

of sheaves. We now give the actual definition:

Definition 2.10 (Presheaf)

A presheaf F (of sets) on a topological space X is the following data:

• for each open set U ⊆ X, we have a set F(U) (the elements of F(U) are called sections of F over U ;

• for each inclusion U ⊆ V of open sets, we have a restriction map resV,U : F(V )→ F(U).

with two requirements:

• the map resU,U is the identity idF(U) for all U ;

• if U ⊆ V ⊆W , then the restriction maps in the following diagram commute:

F(W ) F(V )

F(U)

resW,V

resW,U resV,U
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We sometimes also write resV,U ϕ as simply ϕ|U . Note that some authors also includes F(∅) = {e}, an arbitrary

one-element set in the definition. By convention, if “over U” is omitted, then it is implicitly taken to be over X, i.e.

sections of F means sections of F over X, which are also called global sections.

Remark. Categorically, a presheaf is exactly the data of a contravariant functor from the category of open sets of

X to Sets as morphisms in the category of open sets are precisely inclusion maps, i.e. F is a contravariant functor

F : OpenSets(X)op → Sets.

Definition 2.11 (Sheaf)

A sheaf is a presheaf that satisfies the following two axioms:

(a) Identity: If {Ui} is an open cover of U , ϕ1, ϕ2 ∈ F(U) and ϕ1|Ui = ϕ2|Ui for all i, then ϕ1 = ϕ2.

(b) Gluing: If {Ui} is an open cover of U and ϕi ∈ F(Ui) for all i such that ϕi|Ui∩Uj
= ϕj |Ui∩Uj

for all i, j,
then there is some ϕ ∈ F(U) such that ϕ|Ui

= ϕi for all i.

Equivalently, a presheaf is a sheaf if it satisfies the “unique gluing” axiom: If {Ui} is an open cover of U and

ϕi ∈ F(Ui) such that ϕi|Ui∩Uj = ϕj |Ui∩Uj for all i, j, then there is a unique ϕ ∈ F(U) such that ϕ|Ui = ϕi for all i.

Remark. Although we have only constructed (pre-)sheaves of sets, in the same way we can defined (pre-)sheaves of

K-algebras, abelian groups or other suitable categories, by requiring all F(U) are objects and all restriction maps

are morphisms in the corresponding category. In the following, we will mainly be concerned with sheaves of rings,

K-algebras and modules.

Example 2.12 (Example of sheaves)

Intuitively speaking, any “function-like” object form a presheaf:

• Presheaves of plain / continuous / differentiable / smooth real functions are all sheaves on Rn, since
continuity is a local property (meaning that we only have to look at small open neighbourhoods at once).

• Let X be an affine variety, then the rings OX(U) of regular functions on open subsets U ⊆ X together
with the usual restriction maps of functions form a sheaf OX of K-algebras on X, again because a map is
regular if it is locally a quotient.

We call OX the sheaf of regular functions on X.

• However, the presheaf of constant real functions is not a sheaf in general, since we can pick two disjoint
open sets U1, U2, so that the constant function 1 on U1 and the constant function 2 on U2 are not gluable.

The examples should ring a bell in your head about how to view a sheaf correctly:

! Keypoint

Sheaves are presheaves for which F is a local property.

In order to get used to the language of sheaves let us now consider two common constructions with them.

Definition 2.13 (Restrictions of (pre-)sheaves)

Let F be a presheaf on a topological space X, and let U ⊆ X be an open subset. Then the restriction of F
to U is defined to be the presheaf F|U on U with

F|U (V ) := F(V )

for every open subset V ⊆ U (which is also open in X), and with the restiction maps taken from F . Note that
if F is a sheaf then so is F|U .
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Definition 2.14 (Stalks and germs of (pre-)sheaves)

Let F be a presheaf on a topological space X, and let a ∈ X. Then the stalk of F at a is defined as

Fa := {(U, ϕ) : U ⊆ X open with a ∈ U, and ϕ ∈ F(U)}/ ∼,

where (U, ϕ) ∼ (U ′, ϕ′) if there is an open subset V with a ∈ V ⊆ U ∩ U ′ and ϕ|V = ϕ′|V . Note that this is an
equivalence relation. The elements of Fa are called germs of F at a.

Remark. In the case of the sheaf OX on an affine variety X, it is customary to write its stalk at a point a ∈ X as

OX,a instead of as (OX)a.

It is rarely useful to think of a germ as an ordered pair, since the set U can be arbitrarily small. Instead, one

should think of a germ as a “shred” of some section near a, i.e. a germ in Fa stores the data of some small region

near a, rather than just the value of ϕ(a). So accordingly we draw a large dot for the germ:

Fa

[(·, ϕ)]∼

a V

ϕ ∈ F(V )

X

We note here that Fa inherits the structure of a ring (K-algebra) from F(U): for example, addition is done by

[(U1, ϕ1)] + [(U2, ϕ2)] := [(ϕ1|U1∩U2
+ ϕ2|U1∩U2

, U1 ∩ U2)].

Example 2.15 (Example of germs)

• Let X = R and let F be the sheaf on X of smooth functions. Consider a global section f : R → R (i.e.
f ∈ F(X)) and its germ at 0.

– From the germ we can read off f(0), obviously.

– We can also find f ′(0), because picking an arbitrary representative of the germ gives an open set
containing 0, so we can compute limh→0

1
h [f(h)− f(0)]. Similarly we can find f ′′(0) and so on.

– However, we can’t read off, say f(3) from the germ. For example, consider

f(x) =

{
e−

1
x−1 x > 1

0 x ≤ 1.

Note that f(3) = e−
1
2 , but germs cannot distinguish between f and the zero function.

• However, if we let X = C and let F be the sheaf on X of holomorphic functions, then:

– We can again read off f(0), f ′(0), etc.

– But the miracle here is that just knowing the derivatives of f at zero is enough to reconstruct all of f :
we can compute the Taylor series of f now, i.e. the germs of holomorphic functions determine
the entire function.
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Going back to our focus, germs of regular functions on an irreducible affine varieties also share the above property:

Lemma 2.16

Let ϕ, ψ ∈ OX(U) be two regular functions on an open subset U of an irreducible affine variety. If ϕ and ψ have
the same germ on one stalk OX,a for some a ∈ U then ϕ = ψ.

Proof. We have ϕ|Ua
= ψ|Ua

on some open neighbourhood Ua ⊆ U of a, which is also open in X. But then

Ua ⊆ V (ϕ − ψ), which is closed by Lemma 2.4, so the closure Ua = X (by Lemma 1.27) is also contained in

V (ϕ− ψ).

Finally, stalks of regular functions on an affine variety X can also be described algebraically in terms of localisa-

tions – which is in fact the reason why this algebraic concept is called “localisation”:

Lemma 2.17 (Stalks of regular functions as localisations)

Let a be a point on an affine variety X. Then the stalk OX,a of OX at a is isomorphic (as a K-algebra) to the
localisation A(X)I(a) of the coordinate ring A(X) at the maximal ideal I(a)⊴A(X), i.e. we have

OX,a
∼=

{
g

f
: f, g ∈ A(X) with f(a) ̸= 0

}
.

In particular, OX,a is a local ring (called the local ring of X at a), with unique maximal ideal

Ia := {[(U, ϕ)] ∈ OX,a : ϕ(a) = 0} ∼=
{
g

f
: f, g ∈ A(X) with g(a) = 0 and f(a) ̸= 0

}
.

Proof. Consider the K-algebra homomorphism A(X)I(a) → OX,a defined via

g

f
7→

[(
D(f),

g

f

)]
which makes sense since D(f) is an open subset of X with a ∈ D(f), and g

f ∈ OX(D(f)) by Theorem 2.7. This is

well-defined: if g
f = g′

f ′ in the localisation then h(gf ′ − g′f) = 0 for some h ∈ A(X) \ I(a). Hence

g

f
=
g′

f ′
on D(h) ∩D(f) ∩D(f ′) ∋ a

and so they determine the same element in the stalk OX,a.

Now this map is surjective since by definition any regular function in a sufficiently small neighbourhood of a

must be representable by a fraction g
f with g ∈ A(X) and f ∈ A(X) \ I(a). It is also injective: suppose g

f represents

the zero element in the stalk OX,a, i.e. it is zero in an open neighbourhood of a. From which we may assume by

shrinking that this open neighbourhood is a distinguished open subset D(h) containing a, i.e. with h ∈ A(X) \ I(a).
But then h(g · 1− 0 · f) is zero on all of X, hence zero in A(X), so g

f = 0
1 in A(X)I(a).

To end, we give an equivalent categorical definition of a stalk for category theory lovers:

Definition 2.18 (Stalks and germs, categorical)

A stalk of F at a point p is a colimit of all F(U) over open neighbourhoods U of p:

Fp = lim−→F(U).

The image of f ∈ F(U) under the colimit map is then called the germ of f at p.

The two definitions are equivalent since the index category OpenSets(X) is a filtered set. Thus this definition

actually allows us to define stalks for sheaves of sets, groups, rings, and other things for which colimits exist.
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2.3 Morphisms

So far we have defined and studied regular functions on an affine variety X. They can be thought of as the

morphisms from open subsets of X to the ground field K = A1. We now want to extend this notion of morphisms

to other affine varieties than just to A1.

Definition 2.19 (Ringed spaces)

A ringed space is a topological space X together with a sheaf of rings on X. In this situation the given sheaf
will always be denoted OX and called the structure sheaf of the ringed space.

Hence, from now on, an affine variety will always be considered as a ringed space together with its sheaf of regular

functions as the structure sheaf. Moreover, an open subset U of a ringed space X will always be considered as a

ringed space with the structure sheaf being the restriction OX |U .

Motivation

So, how might we define the “nice” maps between affine varieties? Well, we have the idea that regular functions
make up the structure of an affine variety, so the obvious idea is to define a morphism

f : X → Y

between affine varieties (or more generally ringed spaces) to be maps preserving this structure in the sense that
for any regular ϕ : U → K on an open subset of Y , the composition

ϕ ◦ f : f−1(U)
f→ U

ϕ→ K

is again a regular function.

Remark. A slight technical problem: the elements of OX(U) or OY (V ) might not be functions since the definition

has to work for general ringed spaces, so composition might not make sense. To fix this, we from now on assume

that sheaves of rings are actually sheaves of K-valued functions, i.e. if F is a sheaf of rings then F(U) is a subring

of the ring of all functions from U to K.

With this convention we can now go ahead to define morphisms:

Definition 2.20 (Pullbacks and morphisms)

Let f : X → Y be a map of ringed spaces.

(a) For any map ϕ ∈ OY (U) we define the pull-back of ϕ by f , denoted f∗ϕ, to be the composition

f∗ϕ = ϕ ◦ f : f−1(U)
f→ U

ϕ→ K.

(b) The map f is a morphism (of ringed spaces) if it is continuous, and if for all open subsets U ⊆ Y and
ϕ ∈ OY (U) we have f∗ϕ ∈ OX(f−1(U)).

f is an isomorphism if it has a two-sided inverse which is also a morphism.

Caution: The requirement of f being continuous in necessary: or else OX(f−1(U)) is not well-defined.

In particular, when f is a morphism, the pull-back gives us a K-algebra homomorphism

f∗ : OY (U)→ OX(f−1(U))

for every U ; thus our morphisms package a lot of information.

Remark. Without the assumption that OY (U) contains functions, one would actually have to include suitable

ring homomorphisms OY (U) → OX(f−1(U)). In other words, in this case a morphism would no longer be just a

set-theoretic map satisfying certain properties. This happens for schemes that we will discuss later.
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Here’s a picture of a morphism f , and the pull-back of ϕ : U → K:

f−1(U)
U

f

f∗

X Y

f∗ϕ ∈ OX(f−1(U)) ϕ ∈ OY (U)

K

Example 2.21 (Example of pull-back)

The map
f : X = A1 → Y = A1, t 7→ t2

is a morphism of varieties. For example, consider the regular function ϕ(y) = 1
y−25 on the open set Y \{25} ⊆ Y .

The pre-image under f is X \ {±5}, thus the pull-back is

f∗ϕ : X \ {±5} → Y \ {25}

x 7→ 1

x2 − 25

which is regular on X \ {±5}.

As some simple observations, we have:

• Compositions of morphisms are morphisms: If f : X → Y and g : Y → Z are morphisms of ringed spaces then

so is g ◦ f : X → Z, since it is clearly continuous and for ϕ ∈ OZ(U) we have

(g ◦ f)∗ϕ = ϕ ◦ g ◦ f = f∗(g∗ϕ) ∈ OX(f−1(g−1(U))) = OX((g ◦ f)−1(U)).

• Restrictions of morphisms are morphisms: If f : X → Y is a morphism of ringed spaces and U ⊆ X,V ⊆ Y are

open subsets such that f(U) ⊆ V then the restricted maps f |U : U → V is again a morphism of ringed spaces.

Conversely, morphisms satisfy a “gluing” property similar to that of a sheaf:

Lemma 2.22 (Gluing property for morphisms)

Let f : X → Y be a map of ringed spaces. Assume that there is an open cover {Ui : i ∈ I} of X such that all
restrictions f |Ui : Ui → Y are morphisms. Then f is a morphism.

Proof. By definition we have to check two things:

• f is continuous: Let V ⊆ Y be an open subset. Then

f−1(V ) =
⋃
i∈I

(Ui ∩ f−1(V )) =
⋃
i∈I

(f |Ui)
−1(V ).

But all restrictions f |Ui
are continuous so (f |Ui

)−1(V ) are open in Ui, and hence open in X, i.e. this is a union

of open sets. Thus f is continuous.
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• f pulls back sections of OY to sections of OX : Let V ⊆ Y be an open subset and ϕ ∈ OY (V ). Then

(f∗ϕ)|Ui∩f−1(V ) = (f |Ui∩f−1(V ))
∗ϕ ∈ OX(Ui ∩ f−1(V ))

since f |Ui (and thus also f |Ui∩f(V ) by restricting) is a morphism. By the gluing property for sheaves, this

means that f∗ϕ ∈ OX(f−1(V )).

Let us now apply our definition of morphisms to affine varieties. The following proposition can be viewed as a

confirmation that our constructions above were reasonable:

Proposition 2.23 (Morphisms between affine varieties)

Let U be an open subset of an affine variety X, and let Y ⊂ An be another affine variety. Then the morphisms
f : U → Y are exactly the maps of the form

f = (ϕ1, . . . , ϕn) : U → Y, x 7→ (ϕ1(x), . . . , ϕn(x))

with ϕi ∈ OX(U) for all i = 1, . . . , n.

In particular, the morphisms from U to A1 are exactly the regular functions in OX(U).

Proof. First assume that f : U → Y is a morphism. For i = 1, . . . , n the i-th coordinate function yi on Y ⊆ An is

clearly regular on Y , and so

ϕi := f∗yi ∈ OX(f−1(Y )) = OX(U)

by definition. But this is just the i-th component function of f , and so f = (ϕ1, . . . , ϕn).

Conversely, let now f = (ϕ1, . . . , ϕn) with ϕ1, . . . , ϕn ∈ OX(U) and f(U) ⊆ Y .

• f is continuous: Let Z be closed in Y . Then Z = V (g1, . . . , gm) for some g1, . . . , gm ∈ A(Y ), and

f−1(Z) = {x ∈ U : gi(ϕ1(x), . . . , ϕn(x)) = 0 for all i = 1, . . . ,m}.

But the functions x 7→ gi(ϕ1(x), . . . , ϕn(x)) are regular on U , since locally plugging in quotients of polynomial

functions gives again locally a quotient of polynomial functions. Hence f−1(Z) is closed in U by Lemma 2.4.

• f pulls back sections of OY to sections of OX : Let ϕ ∈ OY (W ) be a regular function on some open subset

W ⊂ Y . Then

f∗ϕ = ϕ ◦ f : f−1(W )→ K,x 7→ ϕ(ϕ1(x), . . . , ϕn(x))

is regular again by the same argument. Thus f is a morphism.

For affine varieties themselves (rather than their open subsets) we obtain as a consequence the following useful

corollary that translates our geometric notion of morphisms entirely into the language of commutative algebra:

Corollary 2.24

For any two affine varieties X and Y , there is a bijection

{morphisms X → Y } ←→ {K-algebra homomorphisms A(Y )→ A(X)}
f 7−→ f∗.

In particular, isomorphisms of affine varieties correspond exactly to K-algebra isomorphisms in this way.

Proof. By definition it is clear that any morphism f : X → Y determines a K-algebra homomorphism

f∗ : OY (Y )→ OX(X),

i.e. f∗ : A(Y )→ A(X) by Theorem 2.7.
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Conversely, let g : A(Y )→ A(X) be a K-algebra homomorphism. Assume that Y ⊆ An and denote by y1, . . . , yn

the coordinate functions of An. Then ϕi := g(yi) ∈ A(X) = OX(X) for all i = 1, . . . , n. If we set f = (ϕ1, . . . , ϕn) :

X → An then we obtain for any h ∈ K[y1, . . . , yn]

(f∗h)(x) = h(f(x)) = h(ϕ1, . . . , ϕn)
(∗)
= g(h)(x) for all x ∈ X,

where (∗) holds since both sides of the equation are K-algebra homomorphisms in h, and putting in h = yi for

i = 1, . . . , n (i.e. a set of generators of K[y1, . . . , yn]) we see that

yi(ϕ1, . . . , ϕn) = ϕi(x) = g(yi)(x).

This shows that h(f(x)) = g(h)(x) = 0 for all h ∈ I(Y ) since these polynomials are zero in A(Y ). Hence the

image of f lies in V (I(Y )) = Y , i.e. we have a map f : X → Y . As its coordinate functions are regular, it is indeed

a morphism by Proposition 2.23, and moreover the above shows f∗ = g so we have the desired bijection.

The additional statement about isomorphisms now follows immediately since (f ◦g)∗ = g∗◦f∗ and (g◦f)∗ = f∗◦g∗

for all f : X → Y and g : Y → X.

That being said, one has to be very careful when dealing with isomorphisms of ringed spaces:

Caution: An isomorphism of ringed spaces is not necessarily a bijective morphism.

Example 2.25 (Isomorphisms ̸= bijective morphisms)

Let X = V (x2 − y3) ⊆ A2 be a cubic curve:

x

y

V (x2 − y3)

A2

Consider the map
f : A1 → X, t 7→ (t3, t2)

which is a morphism by Proposition 2.23. Its corresponding K-algebra homomorphism f∗ is

f∗ : K[x, y]/(x2 − y3)→ K[t]

x 7→ f∗x = x ◦ f = t3

y 7→ f∗y = y ◦ f = t2.

Now note that f is bijective with inverse map

(x, y) 7→

{
x
y if x2 ̸= 0

0 if x2 = 0.

But f is not an isomorphism (i.e. f−1 is not a morphism), since otherwise by Corollary 2.24 f∗ has to be an
isomorphism as well – which is false since clearly

deg f∗p ≥ 2

for any p ∈ K[x, y]/(x2 − y3), so for instance t is not in the image of f∗.
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Another consequence of Proposition 2.23 concerns the definition of the product X × Y of two affine varieties X

and Y . Recall from Example 1.18 that X × Y does not carry the product topology. The following however justifies

this choice, by showing that the definition satisfies the so-called universal property.

Proposition 2.26 (Universal property of products)

Let X and Y be affine varieties, and let πX : X × Y → X and πY : X × Y → Y be the projection morphisms
from the product to the two factors. Then for every affine variety Z and two morphisms fX : Z → X and
fY : Z → Y there is a unique morphism f : Z → X × Y such that fX = πX ◦ f and fY = πY ◦ f .

The picture is

Z

X × Y X

Y

fX

πX

πY
fY

f

and in other words, this means

! Keypoint

Giving a morphism to X × Y is the same as giving a morphism to each of the factors X and Y .

Proof. Obviously, the only way to obtain the relations fX = πX ◦f and fY = πY ◦f is to take the map f : Z → X×Y
by z 7→ (fX(z), fY (z)). But this is clearly a morphism by Proposition 2.23: as fX and fY must be given by regular

functions in each coordinate, the same is then true for f .

Moreover, recall that taking A(−) reverses the morphism arrows, i.e. we have a commutative diagram

R

A(X × Y ) A(X)

A(Y )

This is a diagram of a coproduct. In the category of K-algebras, this correspond to the notion of tensor

products. Hence, the coordinate ring A(X × Y ) is just the tensor product A(X)⊗K A(Y ).

We now bravely proceed to a very important realisation:

Motivation

Corollary 2.24 suggests a different way to construct affine varieties: Let R be a finitely generated K-algebra,
and assume that it is reduced, i.e. it has no nilpotent elements. We can then pick generators a1, . . . , an for R
and obtain a surjective K-algebra homomorphism

g : K[x1, . . . , xn]→ R, f 7→ f(a1, . . . , an).

We then have R ∼= K[x1, . . . , xn]/ ker g, and furthermore ker g is radical since R is reduced. Hence X = V (ker g)
is an affine variety in An, with coordinate ring R.

Note that this construction of X from R depends on the choice of generators, so we get different affine varieties.

However, Corollary 2.24 implies that all these affine varieties will be isomorphic since they have isomorphic coordinate

rings, but they just differ in their embeddings in affine spaces.
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This motivates us to make a redefinition of the term “affine variety” to allow for objects that are isomorphic to

an affine variety but do not come with an intrinsic description as the zero locus of some polynomials:

Definition 2.27 (Redefinition of affine varieties)

From now on, an affine variety will be a ringed space that is isomorphic to an affine variety in the old sense.

Remark. With this new definition, the above motivation can be reformulated by saying that there is a bijection

{affine varieties}/isomorphisms ←→ {finitely generated reduced K-algebras}/isomorphisms

that also extends to morphisms by Corollary 2.24.

Note also that all our concepts carry immediately to an affine variety X in this new sense:

• All topological concepts are still defined since X is a topological space.

• Regular functions are just sections of the structure sheaf OX .

• The coordinate ring A(X) can be considered to be OX(X) (by Theorem 2.7).

• Products involving X can be defined using any embedding of X in an affine space (yielding a product that is

unique up to isomorphisms).

Yet this redefinition still introduces new objects – for instance, the most important example of affine varieties in

this new sense that do not look like affine varieties a priori are the distinguished open subsets:

Proposition 2.28 (Distinguished open subsets are affine varieties)

Let X be an affine variety, and let f ∈ A(X). Then the distinguished open subset D(f) is an affine variety with
coordinate ring A(D(f)) ∼= A(X)f .

Proof. Consider

Y := {(x, t) ∈ X × A1 : tf(x) = 1} ⊆ X × A1

which is an affine variety as it is the zero locus of the polynomial tf(x)− 1 in the affine variety X × A1:

x

t Y

1
f(x)

f(x)

D(f)

g

The affine variety Y is isomorphic to D(f) by the projection morphism

g :Y → D(f), (x, t) 7→ x

with inverse g−1 :D(f)→ Y, x 7→
(
x,

1

f(x)

)
so D(f) is an affine variety. By Theorem 2.7 we also have A(D(f)) ∼= OX(D(f)) ∼= A(X)f .
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To end the section, we give one example which, even in the new sense, is not an affine variety:

Example 2.29 (Punctured plane is not affine)

As in Example 2.9 let X = A2 and consider the open subset U = A2 \ {0} of X. Then even in the new sense
the ringed space U is not an affine variety:

• Otherwise its coordinate ring would be OX(U), and thus just the polynomial ring K[x, y] by Example 2.9.

• But this is the equal to A(X), and hence Corollary 2.24 would imply that U and X are isomorphic, with
the isomorphism given by the identity map.

This is obviously not true, so U is not an affine variety.

However, as mentioned before, we can cover U by the two (distinguished) open subsets

D(x) = {(x, y) : x ̸= 0} and D(y) = {(x, y) : y ̸= 0}

which are affine by Proposition 2.28. This leads to the idea that we should also consider ringed spaces that can be

patched together from affine varieties. We will do that in the next chapter.
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3 Varieties

In this chapter we will finally introduce the main objects of study, the so-called varieties.

Motivation

If you know what a manifold is, recall that to construct them one first considers open subsets of Rn that are
supposed to form the patches of your space, and then defines a manifold to be a topological space that looks
locally like these patches.

This is completely analogous in our algebraic case: the affine varieties form the basic patches, and general
varieties are then spaces that look locally like affine varieties.

One of the main reason for this is that in the classical topology affine varieties over C are never compact, unless

they are finite. As compact spaces are often better-behaved, we would like to have a method to compactify an affine

variety by “adding some points at infinity”. This will be done when we construct projective varieties.

3.1 Prevarieties

Let us start by defining spaces that can be covered by affine varieties:

Definition 3.1 (Prevarieties)

A prevariety is a ringed space X that has a finite open cover by affine varieties. Morphisms of prevarieties
are simply morphisms as ringed spaces, and the elements of OX(U) for an open subset U ⊂ X will be called
regular functions on U .

Remark. Note that the open cover is not part of the data needed to specify a prevariety; it is just required that

such a cover exists. Any open subset of a prevariety that is an affine variety is called an affine open set.

From this definition, it is clear that any affine variety is a prevariety. More generally, every open subset of an

affine variety is a prevariety: they are covered by distinguished open subsets which are affine open sets.

The basic way to construct new prevarieties is to glue them together from previously known patches. Let X1, X2

be two prevarieties, and let U1,2 ⊆ X1, U2,1 ⊆ X2 be open subsets. Moreover, let f : U1,2 → U2,1 be an isomorphism.

Then we can define a prevariety X by gluing X1 and X2 along f :

U1,2 U2,1

X1 X2

f

glue

X

• As a set, the space X is just the disjoint union X1 ∪X2 modulo the equivalence relation given by a ∼ f(a) and
f(a) ∼ a for all a ∈ U1,2 (in addition to a ∼ a for all a ∈ X1 ∪X2). Note that this gives natural embeddings

i1 : X1 → X and i2 : X2 → X

by sending a point to its equivalence class in X1 ∪X2.

• As a topological space, we call a subset U ⊆ X open if i−1
1 (U) ⊆ X1 and i−1

2 (U) ⊆ X2 are open. In topology,

this is called the quotient topology of i1 and i2.

• As a ringed space, the structure sheaf OX by

OX(U) = {ϕ : U → K : i∗1ϕ ∈ OX1
(i−1

1 (U)) and i∗2ϕ ∈ OX2
(i−1

2 (U))}

for any open subset U ⊆ X. Intuitively, this means a function on the glued space is regular if it is regular when

restricted to both patches. Clearly this defines a sheaf on X.
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With this construction it is checked that the images of i1 and i2 are open subsets of X that are isomorphic to X1

and X2. We will often drop the inclusion maps and say X1, X2 are open subsets of X. Since X1 and X2 are covered

by affine open subsets, the same is true for X, so X is a prevariety.

Example 3.2 (Gluing two copies of A1)

As the simplest example, let X1 = X2 = A1 and U1,2 = U2,1 = A1 \ {0}. We consider two different choices of
the gluing isomorphism:

• Let f : U1,2 → U2,1, x 7→ 1
x . We have X \X1 = X2 \U2,1 which is a single point corresponding to 0 in X2,

and so to “∞ = 1
0” in the coordinate of X1. Hence we can think of the glued space X as A1 ∪ {∞}, and

thus as a “compactification” of the affine line. We denote it by P1.

In the case K = C, the space X is just the Riemann sphere C ∪ {∞}:

0 1
2

1

2−2

−1

− 1
2

0

1
2

1

2−2

−1

− 1
2

X1

X2

glue

∞

0

X

As an example of gluing morphisms as in Lemma 2.22, the morphisms

X1 → X2 ⊂ P1, x 7→ x and X2 → X1 ⊂ P1, x 7→ x

(which correspond to a reflection across the horizontal axis in the picture above) glue together to a single
morphism P1 → P1 that can be thought of as x 7→ 1

x , if we think of P1 as A1 ∪ {∞}.

• Let f : U1,2 → U2,1 be the identity map. Then the space X obtained by gluing X1 and X2 along f is
shown in the picture below, it is “an affine line with two zero points”:

X1

X2

−3

−3

−2

−2

−1

−1

0

0

1

1

2

2

3

3

glue

X

0

0

Obviously this is a somewhat weird space. Speaking in analytic terms in the case K = C, a sequence of
points tending to zero would have two possible limits in X, namely the two zero points.

Also, as in (a) the two morphisms

X1 → X2 ⊂ P1, x 7→ x and X2 → X1 ⊂ P1, x 7→ x

glue again to a morphism g : X → X; this time it exchanges the two zero points and thus the set

{x ∈ X : g(x) = x} = A1 \ {0}

is not closed in X, despite being given by an equality of continuous maps.

Usually we want to exclude such spaces from the objects we consider. This will be fixed in the next section.

36



Bendit Chan 3.1 Prevarieties

Let us now turn to the general construction to glue more than two spaces together. In principle this works the

same way as before; we just have an additional technical compatibility condition.

For a finite index set I let Xi be a prevariety for all i ∈ I, and suppose for all i, j ∈ I with i ̸= j we have open

subsets Ui,j ⊆ Xi and isomorphisms fi,j : Ui,j → Uj,i such that for all distinct i, j, k ∈ I we have

(a) fj,i = f−1
i,j ;

(b) Ui,j ∩ f−1
i,j (Uj,k) ⊆ Ui,k and fj,k ◦ fi,j = fi,k on Ui,j ∩ f−1

i,j (Uj,k).

Ui,j Uj,i

Ui,k Uj,k

Uk,i Uk,j

Xi Xj

Xk

fi,j

fi,k fj,k
glue

X

Remark. Note that the set-theoretic condition in (b) just says that the domain of definition of fj,k ◦ fi,j is included

in the domain of definition of fi,k, so that fj,k ◦ fi,j = fi,k makes sense.

In analogy to gluing two prevarieties, we can then define a set X by taking the disjoint union of all Xi for all

i ∈ I, modulo the equivalence relation a ∼ fi,j(a) for all a ∈ Ui,j ⊆ Xi. In fact, the two conditions (a) and (b) above

ensure precisely that this relation is symmetric and transitive, respectively. We can also endow a topology and a

structure sheaf on X in a similar fashion.

We will devote the remaining section to study some of the basic properties of prevarieties. Of course, all topological

concepts (connectedness, irreducibility and dimension etc.) carry over to the case of prevarieties.

Definition 3.3 (Open and closed subprevarieties)

Let X be a prevariety.

(a) Let U ⊆ X be an open subset. Then U is again a prevariety (with structure sheaf OU as in Definition
2.13): As X can be covered affine varieties, U can be covered by open subsets of affine varieties, which
themselves can be covered by affine varieties.

We call U (with this structure as a prevariety) an open subprevariety of X.

(b) For a closed subset Y ⊂ X the situation is more complicated: We cannot simply define OY (U) as OX(U)
since U is in general not open in X. Instead, we define OY (U) to be the K-algebra of functions U → K
that are locally restrictions of functions on X, or formally

OY (U) := {ϕ : U → K : for all a ∈ U there is an

locally︷ ︸︸ ︷
open neighbourhood V ⊆ X of a

and ψ ∈ OX(V ) with ϕ = ψ on U ∩ V︸ ︷︷ ︸
restrictions of functions on X

}.

By the local nature of this definition OY is a sheaf, thus making Y a ringed space (and also a prevariety)
called a closed subprevariety of X.

Remark. Note that the extra local condition in the case of a closed subprevariety is required not only to make OY

a sheaf: we need to artificially create an open neighbourhood V of X so that OX(V ) makes sense.
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Unfortunately, for a general subset of X there is no way to make it into a prevariety in a natural way. Even

worse, the notions of open and closed subprevarieties do not mix very well: for example, in X = A2 consider the

union of the open subprevariety U = A1 × (A1 \ {0}) and the closed subprevariety Y = {0}:

U ∪ Y

This subset does not have a natural structure as a subprevariety of A2, since it does not look like an affine variety

in a neighbourhood of the origin.

Example 3.4 (Morphisms on closed subprevarieties)

Since we have defined regular functions on a closed subprevariety Y of X, we might discuss morphisms from
and to Y . For instance:

• The inclusion map i : Y → X is a morphism, since it is continuous, and if ϕ ∈ OX(U) then

i∗ϕ = ϕ ◦ i = ϕ|Y

which is clearly regular, and so i∗ϕ ∈ OY (i
−1(U)) = OY (U ∩ Y ).

• If f : Z → X is a morphism from a prevariety Z such that f(Z) ⊆ Y then we can regard f as an morphism
from Z to Y , since pull-back of a regular function on Y by f is locally also a pull-back on X.

Remark. As with continuous maps, the image of an open or closed subprevariety under a morphism is not necessarily

an open or closed subprevariety. For instance, consider the prevariety X = V (yz − 1)∪ {0} ⊆ A3 and the morphism

f : X → A2, (x, y, z) 7→ (x, y).

Then the image f(X) is exactly the space A1 × (A1 \ {0}) which we have seen is neither open nor closed.

As a substitute, one can often consider the graph of f instead of its image, see Proposition 3.8(a).

As for the product X × Y of two prevarieties X and Y , the natural idea is to construct this space by choosing

affine covers {Ui} and {Vj} of X and Y , and then gluing the affine product varieties Ui × Vj . This is essentially

correct, except we have to prove that this does not depend on the chosen affine cover. The best way out of this

trouble is to use a universal property:

Proposition 3.5 (Products of prevarieties)

A product X × Y (satisfying the universal property as in Proposition 2.26) of two prevarieties X and Y exist
and is unique up to unique isomorphism.

Recall that the picture is:

Z

X × Y X

Y

fX

πX

πY
fY

f

and as before, this means that giving a morphism to X × Y is the same as giving a morphism to X and Y .
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Proof. Note that uniqueness come directly from the universal property. We simply show existence here.

Let X and Y be covered by affine varieties U1, . . . , Un and V1, . . . , Vm respectively. We glue any two affine

products Ui × Vj and Ui′ × Vj′ along the identity isomorphism of the common open subset

(Ui ∩ Ui′)× (Vj ∩ Vj′).

Note that these isomorphisms clearly satisfy the two needed conditions of the construction, and that the resulting

space is set-theoretically X × Y . Moreover, using Lemma 2.22 we can the glue the affine projections

Ui × Vj → Ui ⊆ X and Ui × Vj → Vj ⊆ Y

to morphisms πX : X × Y → X and πY : X × Y → Y .

It remains to check the universal property for this construction. If fX : Z → X and fY : Z → Y are any two

morphisms from a prevariety Z, the only way to achieve πX ◦ f = fX and πY ◦ f = fY is to define

f : Z → X × Y, f(z) = (fX(z), fY (z)).

Again by Lemma 2.22, we can check that this is a morphism by restricting it to an affine open cover: first cover Z

by the open subsets f−1
X (Ui)∩ f−1

Y (Vj), and these subsets then by affine open subsets, so we may assume that every

affine subset in our open cover of Z is mapped to a single (and hence affine) patch Ui × Vj . But then it follows from

Proposition 2.26 that f is a morphism.

Remark. Note that there are two structures of prevarieties on the product of two closed subprevarieties X ′ ⊆ X and

Y ′ ⊆ Y : the closed subprevariety and the product prevariety structure. But these agree: the set-theoretic identity

map is a morphism between these two structures in both ways.

3.2 Separatedness

Let us now impose a condition on prevarieties that finally defines varieties in general:

Motivation

The goal is to exclude prevarieties such as the affine line with two zero points. In the theory of manifolds, this is
done by requiring that the topological space satisfies the so-called Hausdorff property, but this is not useful
in our case: any two open subsets of an irreducible space can never be disjoint.

The solution to this is inspired by a proposition in general topology stating that the Hausdorff property is
equivalent to the condition that the diagonal

∆X = {(x, x) : x ∈ X}

is closed in X ×X (with the product topology). When X is the affine line with two zero points a and b:

X

a

b
X ×X

a
b

ba

∆X

The product X × X then contains four zero points (a, a), (a, b), (b, a) and (b, b), but by definition only two of
them are in ∆X . Hence the diagonal is not closed.

Of course, this does not really help us directly in algebraic geometry since we do not use the product topology

on X ×X; but the geometric idea to detect doubled points is still valid – and this becomes the definition.
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Definition 3.6 (Varieties)

A prevariety X is called a variety (or separated) if the diagonal

∆X := {(x, x) : x ∈ X}

is closed in X ×X.

So the affine line with two origins is not a variety. In contrast, the following lemma shows that most prevarieties

that we will meet are varieties:

Lemma 3.7

(a) Affine varieties are varieties.

(b) Open and closed subprevarieties of varieties are varieties. We will therefore simply call them open and
closed subvarieties respectively.

Proof. (a) If X ⊆ An then ∆X = V (x1 − y1, . . . , xn − yn) ⊆ X × X, where x1, . . . , xn and y1, . . . , yn are the

coordinates on the two factors, respectively. Hence ∆X is closed.

(b) If Y ⊆ X is open or closed, consider the inclusion morphism i : Y ×Y → X ×X (which exists by the universal

property of Proposition 3.5). As we have ∆Y = i−1(∆X) and ∆X is closed by assumption, ∆Y is closed as well

by the continuity of i.

Hence, from now on we will almost always assume that our spaces are separated, and thus talk about varieties

instead of prevarieties. To end, we give the following additional desirable properties of varieties in addition to the

ones for prevarieties:

Proposition 3.8 (Proposition of varieties)

Let f, g : X → Y be morphisms of prevarieties, and assume that Y is a variety.

(a) The graph Γf := {(x, f(x)) : x ∈ X} is closed in X × Y .

(b) The set {x ∈ X : f(x) = g(x)} is closed in X.

Proof. (a) By the universal property of products, there is a morphism

(f, id) : X × Y → Y × Y, (x, y) 7→ (f(x), y).

As Y is a variety, we know that ∆Y is closed, and hence so is Γf = (f, id)−1(∆Y ) by continuity.

(b) Similarly to (a), the given set is the inverse image of the diagonal ∆Y under the morphism X → Y × Y, x 7→
(f(x), g(x)), and hence is closed.
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Bendit Chan 4 Projective Varieties

4 Projective Varieties

4.1 Topology

4.2 Ringed Space

5 Classical constructions

5.1 Grassmannians

5.2 Blowing up

5.3 Smoothness

6 Case study: 27 Lines on a Smooth Cubic Surface
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