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Bendit Chan 1 Basics

Note. Following Ravi Vakil’s style, we use ⋆ to denote topics worth knowing on a second (but not first) reading.

1 Basics

A group is one of the most basic structures in higher mathematics. In this section, we will introduce some basic

group theory to kickstart our journey.

1.1 Groups and Subgroups

A group consists of two data: a set G, and an associative binary operation ⋆ with some properties. Before the

definition, let’s first look at a motivational example:

Motivation

Lets look at one of the simplest group: the pair (Z,+). The set is Z = {. . . ,−2,−1, 0, 1, 2, . . .} and the associative
operation is addition. Note that

• the element 0 ∈ Z is an identity: a+ 0 = 0 + a = a for any a;

• every element a ∈ Z has an additive inverse: a+ (−a) = (−a) + a = 0.

This makes Z a group under addition.

From this, you might already have a guess on what the definition of a group is:

Definition 1.1 (Group)

A group is a pair G = (G, ⋆) consisting of a set of elements G and a binary operation ⋆ : G×G→ G such that

(G1) the operation is associative: (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c) for any a, b, c ∈ G;

(G2) G has an identity element: there exists e ∈ G such that

g ⋆ e = e ⋆ g = g for all g ∈ G;

(G3) every element in G has an inverse: for any g ∈ G, there exists h ∈ G such that

g ⋆ h = h ⋆ g = e.

Remark. Some authors like to add a “closure” axiom, i.e. to say that g ⋆ h ∈ G for any g, h ∈ G. This is implied

already by the fact that ⋆ is a binary operation on G, but is worth keeping in mind nonetheless.

Note that associativity essentially means that brackets do not affect the result of the operation, so we usually

omit the parentheses. However, this does NOT imply that ⋆ is commutative (g ⋆ h = h ⋆ g for all g, h ∈ G). So we

say a group is abelian if the operation is commutative and non-abelian otherwise.

Example 1.2 (Rationals)

You have seen one example of groups above. Here is another classic example:

• The pair (Q, ·) is NOT a group: while there is an identity element, the element 0 does not have an inverse.

• However, (Q×, ·) where Q× denotes the set of non-zero rational numbers, is a group: multiplication is
obviously associative, and

– the element 1 ∈ Q× is an identity: for any a ∈ Q×, a · 1 = 1 · a = a;

– for any a ∈ Q×, there is an inverse a−1 = 1/a so that a · a−1 = a−1 · a = 1.

In other words, taking out 0 from Q makes it a group.

3
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Example 1.3 (Complex unit circle)

Let S1 denote the set of complex numbers z with absolute value one; that is

S1 := {z ∈ C : |z| = 1}.

Then (S1,×) is a group because

• the complex number 1 ∈ S1 is an identity element;

• each complex number z ∈ S1 has an inverse 1/z which is also in S1, since |z−1| = 1/|z| = 1.

There is one more thing that has to be checked as well: that × is actually a binary operation on S1 (the closure
axiom mentioned in the remark under Definition 1.1). But this follows from |z1z2| = |z1| |z2| = 1.

Notice that all examples above are abelian. We now introduce some non-abelian examples:

Example 1.4 (Linear groups ⋆)

If you know some linear algebra, the following examples should be familiar:

• Let n be a positive integer. We define

GLn(R) := {n× n real matrices A : detA ̸= 0}.

The identity element is In. With the extra condition, any matrix has an inverse. Moreover, det(AB) =
detA · detB so GLn(R) is closed. Thus (GLn(R),×) is a group, called the general linear group.

• Following the example above, if we define

SLn(R) := {n× n real matrices A : detA = 1},

then similarly (SLn(R),×) is a group, called the special linear group.

Before we move on to more examples, we shall first cover some crucial properties of groups.

Remark. From now on, we will often refer to a group (G, ⋆) as simply G. Moreover, we abbreviate a ⋆ b to just ab,

and similarly g ⋆ · · · ⋆ g to gn where n is the number of g’s.

Proposition 1.5

Let G be a group. Then

(i) the identity of G is unique (so we denote the unique identity by e or sometimes eG);

(ii) the inverse of any g ∈ G is unique (so we denote the unique inverse by g−1);

(iii) for any g, h ∈ G, (g−1)−1 = g and (gh)−1 = h−1g−1.

Proof. The proof of this is just some simple manipulations:

(i). If e and f are identities, then e = e ⋆ f = f .

(ii). If h and h′ are inverses to g, then h = h ⋆ (g ⋆ h′) = (h ⋆ g) ⋆ h′ = h′.

(iii). We have g ⋆ g−1 = g−1 ⋆ g = e, so by definition g is the inverse to g−1, i.e. (g−1)−1 = g.

For the second part, we compute

(gh)(h−1g−1) = g(hh−1)g−1 = geg−1 = e.

Similarly (h−1g−1)(gh) = e as well. This shows that h−1g−1 is the inverse to gh, i.e. (gh)−1 = h−1g−1.
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The following important lemma about groups shows why having an inverse is valuable:

Lemma 1.6 (Left multiplication is a bijection)

Let G be a group and g ∈ G. Then the map ϕg : x 7→ gx is a bijection.

Proof. It suffices to check:

• ϕg is injective: Suppose ϕg(x) = ϕg(y), i.e. gx = gy. “Multiplying” g−1 on both sides gives

g−1gx = g−1gy =⇒ ex = ey =⇒ x = y

as desired. (This is often called the cancellation law.)

• ϕg is surjective: Let y ∈ G. Then

ϕg(g
−1y) = gg−1y = ey = y

so ϕg maps g−1y to y, i.e. it is surjective.

Finally, we will introduce a more sophistacated but important example; this acts as a fundamental example in

later discussions.

Example 1.7 (Symmetric group)

The symmetric group Sn consists of permutations of {1, 2, . . . , n}, i.e. bijections σ : {1, 2, . . . , n} → {1, 2, . . . , n}.

• We denote an element σ by the notation(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
.

Note that the second row is an “rearrangement” of the first row.

• The group operation is given by composition, which is also a permutation of {1, 2, . . . , n}.

This is indeed a group: the identity is given by the identity function id(x) = x, and inverses exist because
elements of Sn are bijections. Moreover, it is finite: |Sn| = n! (or we also say Sn is a group of order n!).

Remark. More generally, we might define the symmetric group Sym(X) for any finite setX to be the permutations

of X (again this is a group by the same argument). Then Sn = Sym({1, 2, . . . , n}).

Here’s an explicit example of the group operation on S4. Consider

α =

(
1 2 3 4
2 4 1 3

)
and β =

(
1 2 3 4
2 1 4 3

)
.

Then to compute α ◦ β, we note that

1
β7−→ 2

α7−→ 4 3
β7−→ 4

α7−→ 3

2
β7−→ 1

α7−→ 2 4
β7−→ 3

α7−→ 1

and thus we conclude (with a similar computation for β ◦ α) that

α ◦ β =

(
1 2 3 4
4 2 3 1

)
and β ◦ α =

(
1 2 3 4
1 3 2 4

)
.

Note in particular that these two are still permutations, and α ◦ β ̸= β ◦ α, so S4 is non-abelian.

Caution: When calculating α ◦ β, β is the first permutation being applied (since α ◦ β(x) = α(β(x))).
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We now proceed to introduce a new concept. Recall that GLn(R), the n× n matrices with nonzero determinant,

forms a group under matrix multiplication. At the same time, the subset SLn(R) also formed a group with the same

operation. For this reason we say SLn(R) is a subgroup of GLn(R). This generalises to the following.

Definition 1.8 (Subgroup)

Let (G, ⋆) be a group and H ⊆ G. We say H is a subgroup of G if (H, ⋆) is a group, and is denoted by H ≤ G.
H is a proper subgroup if H ̸= G.

To specify a group G, we need to know both the set G and the operation ⋆. But to specify a subgroup H of a

given group G, we only need to know the elements: the operation is inherited from the operation of G.

Example 1.9 (Examples of subgroups)

• As a trivial example, {e} and G are both subgroups of any group G.

• 2Z = {. . . ,−2, 0, 2, . . .} is a subgroup of Z (with operation +).

• Consider again Sn, and let T be the set of permutations τ : {1, . . . , n} → {1, . . . , n} for which τ(n) = n.
Then T is a subgroup of Sn: indeed id ∈ T , and τ−1 also sends n to n for any τ ∈ T , so τ−1 ∈ T .

Before we move on, a subgroup has an equivalent formulation:

Proposition 1.10 (Test for a subgroup)

Let G be a group and H ⊆ G. Then H is a subgroup of G if and only if

• H is non-empty;

• for all h1, h2 ∈ H, we have h1h2 ∈ H (closed under group operation);

• for all h ∈ H, we have h−1 ∈ H (closed under inverses).

Proof. (⇐) is simple routine. For (⇒), H is a group, so it has an identity eH and it is closed, thus the first two

conditions are already satisfied.

To show the third condition, we show that eG ∈ H, i.e. H must share the identity of G. Let h ∈ H, then

heH = h. By the cancellation law, eH = eG. Similarly, we know h has an inverse h′ ∈ H, i.e. hh′ = eH = eG. But

multiplying h−1 gives h′ = h−1 ∈ H, as desired.

Next is an especially important example that we’ll talk about more later:

Example 1.11 (Subgroup generated by an element)

Let g be an element of a group G. Recall that gm = g ⋆ · · · ⋆ g with m g’s, and g−m = (g−1)m. Consider the set

⟨g⟩ = {gm : m ∈ Z} = {. . . , g−2, g−1, e, g, g2, . . .}.

Then using the above proposition, this is a subgroup of G:

• ⟨g⟩ is non-empty since e ∈ ⟨g⟩.

• Let gn, gm ∈ ⟨g⟩. Then gngm = gn+m ∈ ⟨g⟩, which can be proved by induction.

• Let gn ∈ ⟨g⟩. Then similarly one can prove (gn)−1 = g−n ∈ ⟨g⟩.

We call this the (cyclic) subgroup generated by g.

Note that ⟨g⟩ is abelian since gngm = gn+m = gmgn for any m,n ∈ Z. Also, although Z is infinite, ⟨g⟩ can be

finite: this happens if gm = e for some m ∈ Z.
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Definition 1.12 (Cyclic groups)

We say a group G is cyclic if there is g ∈ G such that ⟨g⟩ = G. In this case, g is called a generator of G.

Thus a cyclic group must be abelian, but not conversely:

Example 1.13 (Klein four-group)

Let

α =

(
1 2 3 4
2 1 4 3

)
, β =

(
1 2 3 4
3 4 1 2

)
, γ =

(
1 2 3 4
4 3 2 1

)
∈ S4.

Then K4 = {id, α, β, γ} is a subgroup of S4, called the Klein four-group. One can check that K4 is abelian.

However, note that g2 = id for all g ∈ K4, so

⟨g⟩ = {id, g} for all g ∈ K4,

i.e. K4 is not cyclic.

This concludes our examples of groups for now.

1.2 Orders and Cyclic groups

We now dive into more details based on the notion of cyclic groups as mentioned above. By the discussion, ⟨g⟩
is finite iff gm = e for some m ∈ Z. Thus it makes sense to define:

Definition 1.14 (Order of an element)

The order of an element g ∈ G is the smallest positive integer n such that gn = e, or ∞ if no such n exists.
We denote this by ord g.

Caution: You might recall that the word order has appeared once before: the order of a group G is the number

of elements in G, or in other words |G|. This is unfortunately quite confusing.

However, from another perspective this makes perfect sense, because of the following:

Theorem 1.15

Suppose G is a group and g ∈ G has finite order n. Then

⟨g⟩ = {e, g, g2, . . . , gn−1}.

In particular, ord g = |⟨g⟩| = n, so the two notions of order coincide.

To prove this, the key step is the following lemma.

Lemma 1.16

For a, b ∈ Z, we have ga = gb if and only if a ≡ b (mod n).

Proof. (⇐) is simple. For (⇒), if ga = gb, then ga−b = e. By division algorithm, there are q, r ∈ Z such that

a− b = qn+ r and 0 ≤ r < n. Then

e = ga−b = gqn+r = (gn)q · gr = gr.

Now by minimality of n (as the order of g), r must be 0. Thus n | a− b, as needed.

Proof of Theorem 1.15. Every m ∈ Z is congruent to exactly one of 0, 1, . . . , n− 1 modulo n, so ⟨g⟩ = {gm : m ∈ Z}
reduces to {e, g, g2, . . . , gn−1} after removing duplicated elements.

In other words, putting everything in a concise sentence:
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! Keypoint

The order of g ∈ G is the order of ⟨g⟩.

Example 1.17 (Examples of orders)

• The order of −1 in Q× is 2, since (−1)1 ̸= 1 and (−1)2 = 1.

• The order of 1 in Z is ∞.

• Consider the group Z/6Z = {[0], [1], . . . , [5]}. The operation is defined via addition modulo 6: for example,
[4] + [5] = [9] = [3]. Then this group is cyclic since Z/6Z = ⟨[1]⟩. We can find the order of each element:

Element [0] [1] [2] [3] [4] [5]

Order 1 6 3 2 3 6

Can you see a pattern here?

The last example suggests a more thorough discussion on cyclic groups. Namely, how do subgroups of cyclic

groups behave? Or more specifically, given a cyclic group G, how should we choose a generator g?

Motivation

Consider another group, (Z/7Z)× = {[1], [2], . . . , [6]}, the non-zero residues modulo 7. The operation is defined
via multiplication modulo 7: for example, [4] · [5] = [20] = [6]. Although this group is indeed cyclic, it now
becomes non-trivial to find a generator. The only way to do this is to compute the order of each element:

Element [1] [2] [3] [4] [5] [6]

Order 1 3 6 3 6 2

Thus, it turns out that [3] and [5] are possible generators.

(If you know some olympiad number theory, you might recognise 3 and 5 as primitive roots modulo 7.)

Finding primitive roots modulo n is in general a difficult process. But, an easier question to answer is whether

we can determine all primitive roots given one of them. The answer is yes (in the case that primitive roots actually

exist), and more generally there is a nice result on cyclic groups telling us everything about their subgroups:

Theorem 1.18

Suppose G is a cyclic group and G = ⟨g⟩. We have the following:

(i) If H ≤ G, then H is cyclic.

(ii) Suppose |G| = n and m ∈ Z. Let d = gcd(m,n), then

⟨gm⟩ = ⟨gd⟩ and |⟨gd⟩| = n/d.

In particular, ⟨gm⟩ = G = ⟨g⟩ if and only if gcd(m,n) = 1.

(iii) If |G| = n and k ≤ n, then G has a subgroup of order k if and only if k | n (and the subgroup is ⟨gn/k⟩).

Proof. (i). WLOG assume that H ̸= {e}. Let d := min{n ∈ N : gn ∈ H}. We claim that H = ⟨gd⟩.

Indeed, as gd ∈ H and H ≤ G, we have ⟨gd⟩ ≤ H. For the other direction, let h ∈ H, then h = gm for some

m ∈ Z. Write m = qd+ r by division algorithm with 0 ≤ r < d, so

h = gqd+r = (gd)qgr =⇒ gr = h(gd)−q ∈ H,

as h ∈ H and gd ∈ H. Minimality of d gives r = 0 and h = (gd)q ∈ ⟨gd⟩.
8
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(ii). By Bézout identity, there are a, b ∈ Z such that d = am+ bn.

To show that ⟨gm⟩ = ⟨gd⟩, it is enough to prove that gm ∈ ⟨gd⟩ and gd ∈ ⟨gm⟩. Since d | m, gm is a power of

gd, so the former is true. For the latter, we have

gd = gam+bn = (gm)a(gn)b = (gm)a ∈ ⟨gm⟩

since n = ord g and gn = e.

Now let’s consider |⟨gd⟩|. Since d | n we have n = kd for some k ∈ N, and so ⟨gd⟩ = {e, gd, . . . , g(k−1)d}. These
are all distinct since d, . . . , (k − 1)d are all less than n, so |⟨gd⟩| = k = n/d.

(iii). This follows from (i) and (ii).

This is a whole lot to digest, so let’s try to apply this result on the last two examples:

Example 1.19 (Properties of cyclic groups)

• Consider (Z/6Z,+) where the addition is modulo 6. We have already seen that Z/6Z = ⟨[1]⟩, so g = [1].
By Theorem 1.18(ii), the generators of this group are [1]1 and [1]5 since gcd(1, 6) = gcd(5, 6) = 1. Indeed,

[1]5 = [1] + · · ·+ [1]︸ ︷︷ ︸
5 times

= [5].

• Similarly, for ((Z/7Z)×, ·), we may pick g = [3], so Theorem 1.18(ii) tells us again that [3]1 and [3]5 are
generators. Indeed,

[3]5 = [3] · · · · · [3]︸ ︷︷ ︸
5 times

= [5].

We will give an application of the previous theorem to prove a result by Gauss, on the following function.

Definition 1.20 (Euler totient function)

For n ∈ N, the Euler totient function ϕ(n) is the number of k ∈ N with 1 ≤ k ≤ n such that gcd(k, n) = 1.

This function is crucial in nnumber theory, and the following corollary is one of its major feature:

Corollary 1.21

For all n ∈ N we have ∑
d|n

ϕ(d) = n.

Proof. Let G be a cyclic group of order n. By Theorem 1.18(iii), if d | n then G has a unique subgroup Gd of order

d. But then for each element g ∈ G with ord g = d, we have |⟨g⟩| = d, so ⟨g⟩ = Gd. In particular g ∈ Gd, so Gd

contains every element of G of order d.

Now by Theorem 1.18(i), Gd is cyclic, and so by Theorem 1.18(ii), Gd has ϕ(d) elements of order d. Counting

elements of G based on their order gives the result.

Naturally, one would consider groups generated by more than one element. For instance, we can define:

Definition 1.22 (Subgroup generated by a set)

Let G be a group and S ⊆ G be non-empty. Write S−1 = {g−1 : g ∈ G}, then

⟨S⟩ := {g1 . . . gk : k ∈ N and g1, . . . , gk ∈ S ∪ S−1}

is the subgroup generated by S.

We will postpone the study of these subgroups to Section 3.
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1.3 Lagrange’s Theorem and Cosets

The main theorem we want to prove in this section is as follows:

Theorem 1.23 (Lagrange’s Theorem)

Suppose G is a finite group and H is a subgroup of G. Then |H| divides |G|.

This theorem has a plethora of applications, as we will see later. To prove this theorem, we need to introduce an

essential definition:

Definition 1.24 (Cosets)

Let G be a group, H ≤ G, and g ∈ G. The subset

gH := {gh : h ∈ H} ⊆ G

is called a left coset of H in G. Similarly, a right coset is a subset of the form Hg.

Motivation

How should one think about cosets? The fundamental example is of “modding things out”: consider G = Z and
H = 100Z = {100n : n ∈ Z}. The cosets of H are (written additively since the operation in G is +)

H = {. . . ,−200,−100, 0, 100, 200, . . .}
1 +H = {. . . ,−199,−99, 1, 101, 201, . . .}
2 +H = {. . . ,−198,−98, 2, 102, 202, . . .}

...

99 +H = {. . . ,−101,−1, 99, 199, 299, . . .}.

The elements of each set have the same remainder when dividing by 100, so it is natural to group them
together. Moreover, any two elements in different cosets have different remainders.

Thus, from now on, we will think of the elements of Z/100Z as cosets: for example [3] = [103] = [−197] is the
coset 3 + 100Z. We will explain this idea further in Section 2.1.

Caution: Although the notation might not suggest it, keep in mind that g1H is often equal to g2H even if g1 ̸= g2.

In the above example, 3 +H = 103 +H. In other words, these cosets are sets. Or, for instance, given that

x+ 100Z = {. . . ,−197,−97, 3, 103, 203, . . .},

there’s no reason to think I picked x = 3. (I actually picked x = −13597.)

Although the above is intuitively how you should remember cosets, they can look vastly different based on what

group we are in:

Example 1.25 (More examples of cosets)

• Let G = (C×, ·) and H = {z ∈ G : |z| = 1}, where C× = C \ {0}. Note that H ≤ G. Then

2H = {2eiθ : θ ∈ R} = {z ∈ G : |z| = 2}

is a left coset of H.

• Let G = (Rn,+) and H = {x ∈ G : Ax = 0} for some fixed m× n matrix A with real entries. Again note
that H ≤ G. Now suppose b ∈ Rm and there exists v ∈ Rn with Av = b. Then

Ax = b ⇐⇒ A(x− v) = 0 ⇐⇒ x− v ∈ H ⇐⇒ x ∈ v +H,

i.e. the set of solutions to Ax = b (if non-empty) is a coset of H.

10
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We saw in the previous examples that, for a fixed subgroup H, the left H-cosets partition G: every element of G

is in exactly one left H-coset. This is in fact a general phenomenon:

Lemma 1.26 (Cosets partition a group)

Let G be a group and H ≤ G. Suppose g1, g2 ∈ G.

(i) If g1 ∈ g2H, then g1H = g2H.

(ii) If g1H ∩ g2H ̸= ∅, then g1H = g2H.

Proof. (i). (⊆). As g1 ∈ g2H, there exists h ∈ H with g1 = g2h. Take any g1h
′ ∈ g1H, then

g1h
′ = (g2h)h

′ = g2(hh
′) ∈ g2H

where hh′ ∈ H since H ≤ G. (⊇) follows too by noticing that g2 = g1h
−1 ∈ g1H.

(ii). Let x ∈ g1H ∩ g2H. By (i), applied twice, we have g1H = xH = g2H.

In addition, similar to Lemma 1.6, the map H → gH given by h 7→ gh is a bijection. Hence if H is finite,

|H| = |gH|, or in other words, all cosets have the same cardinality. In conclusion,

! Keypoint

Cosets of a group G partition G into equal size subsets.

Now the proof of Lagrange’s Theorem should be clear:

Proof of Theorem 1.23. All left cosets of H in G have size |H|, and any two of them are disjoint (by Lemma 1.26).

Moreover, any g ∈ G lies in some left H-coset, namely gH.

Hence |G| is equal to |H| times the number of distinct left cosets of H (which we define as the index of H in

G, denoted [G : H]).

Example 1.27 (Computing all cosets of a subgroup)

Consider G = S3 and H = ⟨α⟩, where α =

(
1 2 3
1 3 2

)
. Let’s try to compute all left cosets of H:

• Note that H = {id, α} so |H| = 2. Together with |G| = 6 we know that there are 3 left H-cosets. One of
them must be H = idH = αH.

• Picking anything which is not id or α would give us a new coset, so let’s take β =

(
1 2 3
2 3 1

)
. Thus

βH = {β, βα} is the second coset.

• Finally, we compute that βα =

(
1 2 3
2 1 3

)
, so let γ =

(
1 2 3
3 1 2

)
̸∈ αH ∪ βH which gives the remaining

left coset, γH = {γ, γα}.

In this example we exploited the fact that cosets partition the group G.

Let us now use Lagrange’s Theorem to prove a list of corollaries.

Corollary 1.28

Let G be a finite group of order n, and g ∈ G. Then ord g | n and gn = e.

Proof. The first statement follows from Lagrange’s Theorem applied on H = ⟨g⟩. Now if k = ord g then gn =

(gk)n/k = en/k = e since k | n.

11
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As a special case, we have the well-known:

Corollary 1.29 (Fermat’s little theorem)

Let p be a prime. If x ∈ Z and p ∤ x, then xp−1 ≡ 1 (mod p).

Proof. Consider the group G = ((Z/pZ)×, ·) where (Z/pZ)× is the set of non-zero elements of Z/pZ. Then |G| = p−1,
and so by Corollary 1.28,

[xp−1] = [x]p−1 = [1] for all [x] ∈ G,

i.e. xp−1 ≡ 1 (mod p) for all x ̸≡ 0 (mod p).

Finally, we can obtain a result which classifies all groups of prime order:

Corollary 1.30 (Groups of prime order are cyclic)

Suppose G is a group of prime order. Then G is cyclic, and if e ̸= g ∈ G then G = ⟨g⟩.

Proof. By Lagrange’s Theorem, |⟨g⟩| divides p, so |⟨g⟩| = 1 or p. As e, g ∈ ⟨g⟩ and e ̸= g we must have |⟨g⟩| = p, or

⟨g⟩ = G, as desired.

1.4 Homomorphisms

After the discussion on groups, it is time to study functions between groups as well. In particular, we would like

to study structure-preserving functions. This motivates the definition of homomorphisms:

Definition 1.31 (Homomorphisms)

Let (G, ⋆) and (H, ∗) be groups. A homomorphism is a function ϕ : G→ H such that for any g1, g2 ∈ G,

ϕ(g1 ⋆ g2) = ϕ(g1) ∗ ϕ(g2).

If this map is a bijection, it is an isomorphism. We then say G and H are isomorphic and write G ∼= H.

In other words, homomorphisms are functions preserving the group operation.

Motivation

Before we give examples of homomorphisms, let us focus on isomorphisms and understand them intuitively.
Consider the two groups

Z = ({. . . ,−2,−1, 0, 1, 2, . . .},+)

10Z = ({. . . ,−20,−10, 0, 10, 20, . . .},+)

These groups are “different”, but only superficially so. Specifically, the map

ϕ : Z→ 10Z by x 7→ 10x

is a bijection of the underlying sets which respect the group action, i.e. ϕ(x+ y) = ϕ(x) + ϕ(y).

This means that one should remember isomophisms in the following manner:

! Keypoint

Isomorphic groups are just the “same group with different names”.

The isomorphism between the two groups is then explicitly saying how the names of the elements in one group

should be renamed in order to get the elements in the other group.

12
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Example 1.32 (Examples of homomorphisms)

Let G and H be groups.

• The identity map id : G→ G is an isomorphism, hence G ∼= G.

• The trivial homomorphism G→ H sends everything to eH .

• There is a homomorphism from Z to Z/100Z by x 7→ [x], i.e. taking modulo 100.

• There is a homomorphism from Sn to Sn+1 by “embedding”: every permutation on {1, . . . , n} can be
thought of as a permutation on {1, . . . , n+ 1} if we simply let n+ 1 be a fixed point.

• The determinant map det : GLn(R)→ R× is a homomorphism since det(AB) = det(A) det(B).

• Specifying a homomorphism Z→ G is the same as specifying the image of the element 1 ∈ Z. Why?

Example 1.33 (Primitive roots modulo 7, revisited)

As a non-trivial example, we claim that Z/6Z ∼= (Z/7Z)×. The bijection is

ϕ([a]) = [3a]

where the [a] on the left side is modulo 6 and the [3a] on the right is modulo 7. We need to check:

• ϕ is well-defined: If a ≡ b (mod 6), then we have a− b = 6k for some k ∈ Z, so

3a = 3b+6k = 3b · (36)k ≡ 3b (mod 7)

since 36 ≡ 1 (mod 7) by Fermat’s little theorem.

• ϕ is bijective: This follows from before that [3] is a generator of (Z/7Z)×. Explicitly,

(31, 32, 33, 34, 35, 36) ≡ (3, 2, 6, 4, 5, 1) (mod 7).

• ϕ is a homomorphism: We want ϕ([a] + [b]) = ϕ([a]) · ϕ([b]); but this is just 3a+b ≡ 3a · 3b (mod 7).

After these examples, we have some obvious properties of homomorphisms.

Lemma 1.34

Let G,H be groups and ϕ : G→ H be a homomorphism. Then ϕ(eG) = eH and ϕ(g−1) = ϕ(g)−1 for all g ∈ G.

Proof. We have ϕ(eG) = ϕ(eGeG) = ϕ(eG)ϕ(eG), and so cancellation law gives the first statement. Then

eH = ϕ(eG) = ϕ(gg−1) = ϕ(g)ϕ(g−1)

so we also have ϕ(g−1) = ϕ(g)−1.

Now comes two definitions related to a homomorphism, one of which is extremely important.

Definition 1.35 (Image and kernel)

Let ϕ : G→ H be a homomorphism. Then the image of ϕ is

imϕ = {ϕ(g) : g ∈ G}.

The kernel of ϕ is
kerϕ = {g : ϕ(g) = eH}.

It is easy to see that they are subgroups of H and G respectively.

13
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To start, let us first look at one particularly important property of the kernel:

Lemma 1.36

A homomorphism ϕ : G→ H is injective if and only if kerϕ = {eG}.

Proof. (⇒). Suppose ϕ(g) = eH = ϕ(eG). Injectivity gives g = eG, so kerϕ = {eG}.

(⇐). Suppose ϕ(g1) = ϕ(g2). Then by ϕ being a homomorphism, ϕ(g1g
−1
2 ) = eH , i.e. g1g

−1
2 ∈ kerϕ. This gives

g1 = g2 as desired by assumption.

To make this concrete, let’s compute the kernel of each of our examples in Example 1.32.

Example 1.37 (Examples of kernels)

• The kernel of the identity map id : G → G is {eG}. In fact, the kernel of any isomorphism is {eG} since
an isomorphism is injective.

• The kernel of the trivial homomorphism (by g 7→ eH) is all of G.

• The kernel of the homomorphism Z→ Z/100Z by x 7→ [x] is precisely

100Z = {. . . ,−200,−100, 0, 100, 200, . . .}.

• The kernel of the embedding homomorphism Sn → Sn+1 is trivial since it is injective.

• The kernel of the determinant map det : GLn(R)→ R× is SLn(R).

• Fix any g ∈ G. What is the kernel of the homomorphism Z→ G by n 7→ gn?

To end this section, let us give a taster of what may come afterwards. A lot of the times in group theory the

goal is to classify a certain class of groups (up to isomorphism, of course); for instance, what are all the groups with

order 12? As a first attempt, we can now answer two such questions:

Proposition 1.38 (There is only one cyclic group of a fixed order)

If G,H are cyclic groups of the same order, then G ∼= H.

Proof. Let G = ⟨g⟩ and H = ⟨h⟩. Define ϕ : G→ H by gk 7→ hk. We need to check:

• ϕ is well-defined: Let n be the order of G and H. We have

ga = gb
(1.16)
=⇒ n | a− b

(1.16)
=⇒ ha = hb.

• ϕ is bijective: Injectivity is by the implication above with arrows reversed. Surjectivity is obvious.

• ϕ is a homomorphism: We have ϕ(gagb) = ϕ(ga+b) = ha+b = hahb = ϕ(ga)ϕ(gb).

Proposition 1.39 (There is only one non-cyclic group of order 4)

If G is a non-cyclic group of order 4, then G ∼= K4.

Proof. Let G = {e, a, b, c}. As G is non-cyclic, there is no element of order 4. By Corollary 1.28, the order of a, b, c

must divide 4, so this forces them to have order 2.

Now we show ab = c – in fact all other possibilities are contradictory: ab = a or b gives either a or b as e; and

ab = e = a2 gives a = b. Similarly we have ba = c, . . . , cb = a. But now the map

e 7→ id, a 7→ α, b 7→ β, c 7→ γ

is clearly an isomorphism from G to K4 = {id, α, β, γ}.
14



Bendit Chan 1.5 More on symmetric groups

1.5 More on symmetric groups

We now devote a section to study more on symmetric groups, and alongside introduce some new examples of

groups which would be useful later on. The reason why we need to care specifically about symmetric groups and

their subgroups is essentially by the following (which you might skip on a first reading):

Theorem 1.40 (Cayley ⋆)

If G is a finite group, then G is isomorphic to a subgroup of Sn where n = |G|.

Proof. For each g ∈ G, we define ϕg : G→ G by x 7→ gx. As we have seen in Lemma 1.6, this map is a bijection for

any g, thus ϕg ∈ Sym(G). Now the map

ϕ : G→ Sym(G) by g 7→ ϕg

is an injective homomorphism:

• ϕ is a homomorphism: Let g1, g2 ∈ G, then

ϕ(g1g2)(x) = ϕg1g2(x) = g1g2x = ϕg1(g2x) = ϕg1 ◦ ϕg2(x) = ϕ(g1) ◦ ϕ(g2)(x).

• ϕ is injective: Suppose ϕ(g1) = ϕ(g2) (as functions). Putting eG into both of these functions give g1 = g2.

Hence, G ∼= imϕ where imϕ ≤ Sym(G). Now clearly Sym(G) ∼= Sn by relabelling the elements as 1, . . . , n. Thus

G is isomorphic to the image of imϕ under this relabelling, which is a subgroup of Sn, as desired.

All this is saying is that:

! Keypoint

Any finite group can be viewed as a subgroup of a symmetric group.

Remark. As a historical remark, before the definition of groups appeared, what people used to call as groups are

actually “subgroups of symmetric groups”. Cayley’s theorem just unifies the two notions.

Now let’s go back to studying symmetric groups. We will first introduce a new notation for elements in Sn: the

disjoint cycle form. First we need a technical langauge:

Definition 1.41

Let f, g ∈ Sn and x ∈ {1, . . . , n}. We say that f fixes x if f(x) = x, and the support of f is

supp(f) := {x ∈ {1, . . . , n} : f(x) ̸= x}.

We say f and g have disjoint support (or are disjoint) if supp(f) ∩ supp(g) = ∅.

Elements with disjoint supports behave nicely; more specifically, they commute:

Lemma 1.42

If f, g ∈ Sn have disjoint supports, then fg = gf .

Proof. Take x ∈ {1, . . . , n}. Since supp(f) ∩ supp(g) = ∅, x must either be fixed by f, g or both f and g. In the last

case it is clear that fg(x) = gf(x), so suppose x is only fixed by f .

Then from g(x) ̸= x, we have g(g(x)) ̸= g(x), so g(x) ∈ supp(g) and g(x) ̸∈ supp(f), or g(x) is fixed by f . Thus

f(g(x)) = g(x) = g(f(x))

as desired. Similarly for the case when x is only fixed by g.

15
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It follows (from induction) that if f, g ∈ Sn are disjoint, then (fg)n = fngn for any n ∈ Z. We are now ready to

define a cycle:

Definition 1.43 (Cycles)

Let f ∈ Sn. If there exists i1, . . . , ir ∈ {1, . . . , n} for some r ≤ n such that

f(i1) = i2, f(i2) = i3, . . . , f(ir) = i1

and f fixes all other elements of {1, . . . , n}, then f is called a cycle of length r, and we write f as (i1i2 . . . ir).

Example 1.44 (Examples of cycles)

• In S6, f =

(
1 2 3 4 5 6
1 4 3 5 2 6

)
is a 3-cycle: f = (245).

Note that f = (452) = (524). It is also easy to compute directly that f2 = (254) and f3 = id.

• (1234) ∈ S5 is the permutation

(
1 2 3 4 5
2 3 4 1 5

)
.

• A 1-cycle is the identity id.

We multiply cycles in the same way for permutations (i.e. they are composition of functions). For instance, let

f = (123), g = (4526) ∈ S6. Then we can compute

1
g7−→ 1

f7−→ 2

2
g7−→ 6

f7−→ 6

6
g7−→ 4

f7−→ 4

...

and so fg = (126453). Note that we do not always end up with a cycle: take (12) and (13425) in S6, then

(12)(13425) = (134)(25)(6) = (134)(25)

as (6) is just the identity. Although this is not a cycle, we now have two disjoint cycles, and so we can compute

powers easily. This is the key idea of disjoint cycle forms:

Theorem 1.45 (Disjoint cycle form)

If f ∈ Sn, then there exist cycles f1, . . . , fk ∈ Sn with disjoint supports such that f = f1f2 · · · fk.
If we further assume that (i) the fi are not 1-cycles (when f ̸= id) and (ii) supp(fi) ⊆ supp(f), then this
representation of f is unique, up to rearrangment of fi’s. We call this the disjoint cycle form of f .

Before the proof, let us first look at an example of how the disjoint cycle form of an element is computed:

Example 1.46

Consider

f =

(
1 2 3 4 5 6 7 8 9
4 5 1 6 9 3 8 7 2

)
∈ S9.

The general algorithm is to start at an element of {1, . . . , n} and keep applying f to obtain a cycle. For instance,

1
f7−→ 4

f7−→ 6
f7−→ 3

f7−→ 1

and so (1463) is the first cycle. Similarly one could obtain f = (1463)(259)(78). Note that since these cycles are
disjoint, the order in which they are written doesn’t matter.
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Proof of Theorem 1.45. (Existence). We prove the result by strong induction on m = |supp(f)|.

If m = 0 then f = id = (1). Now assume m ≥ 1, and take i1 ∈ supp(f), i.e. f(i1) ̸= i1. Let f(i1) = i2, f(i2) =

i3, . . ., and choose r as small as possible with f(ir) ∈ {i1, . . . , ir−1}. Note that there is such an r with r ≤ n.

We claim that f(ir) = i1. Otherwise, we have f(ir) = ij for some 2 ≤ j ≤ r − 1. So

f(ir) = ij = f(ij−1) =⇒ ir = ij−1

since f is bijective, contradicting minimality of r.

It follows that f = gf1 where f1 = (i1 . . . ir) and supp(g) = supp(f) \ {i1, . . . , ir}. By induction hypothesis we

can write g = f2 . . . fk where f2, . . . , fk have disjoint supports. Hence f = f2 . . . fkf1, a product of disjoint cycles.

(Uniqueness). Suppose we have f = h1 . . . hℓ as a product of disjoint cycles. We shall prove that k = ℓ and

{f1, . . . , fk} = {h1 . . . , hℓ}. Again assume this is true for permutations with smaller support size.

Let i1 ∈ supp(f). By rearranging the cycles if necessary we can assume that i1 is in the cycles fk and hℓ. As

above let r be as small as possible with fr(i1) = i1, then

fk = (i1, f(i1), . . . , f
r−1(i1)) = hℓ.

By cancellation law, we then have f1 . . . fk−1 = h1 . . . hℓ−1, so the inductive hypothesis implies the result.

Let us also note that the order of an element is easy to compute given its disjoint cycle form:

Theorem 1.47

Suppose f ∈ Sn is written in disjoint cycle form as f = f1 . . . fk where fi is an ri-cycle for 1 ≤ i ≤ k. Then

(i) fm = id if and only if fm
i = id for all 1 ≤ i ≤ k.

(ii) ord(g) = lcm(r1, . . . , rk).

Proof. (i). (⇐) is by the fact that fm = fm
1 . . . fm

k (since f1, . . . , fk are pairwise disjoint).

For (⇒), we have fm
1 . . . fm

k = id, but also that the fm
i ’s have pairwise disjoint supports (although they are

not necessarily cycles). Thus each fm
i is the identity.

(ii). As fi is an ri-cycle, its order is ri. Thus

fm = id ⇐⇒ fm
i = id ⇐⇒ ri | m,

so the smallest m with fm = id is lcm(r1, . . . , rk).

To end, we will introduce a type of subgroups of symmetric groups, which will be a useful example.

Definition 1.48 (Dihedral groups)

The dihedral group of order 2n, denoted D2n, is the group of symmetries of a regular n-gon A1A2 . . . An,
which includes rotations and reflections. Explicitly,

D2n = {id, r, r2, . . . , rn−1, s, sr, sr2, . . . , srn−1}

where r corresponds to rotation by 2π
n and s corresponds to reflection across OA1 (where O is the center of the

polygon). Note that rn = s2 = id and rks = sr−k.

Hence, rs means “reflect then rotate”, just like function composition.
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Example 1.49

Here is a picture of some elements of D10:

id 1

2
3

4
5

r 5

1
2

3
4

s 1

5
4

3
2

sr 5

4
3

2
1

rs 2

1
5

4
3

In particular, sr ̸= rs so D10 is not abelian.

The reason why this is a subgroup of Sn should be clear: after all, r and s are both permutations on {1, . . . , n}!
Namely, we have

r = (12 . . . n) and s = (1)(2, n)(3, n− 1) . . .

and D2n = ⟨r, s⟩ ≤ Sn, as in Definition 1.22.

Remark. The commas in s is to avoid confusion; they are just the cycles we have seen before. The precise formula

for s will also depend on whether n is odd or even.
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2 Quotient Groups

We proceed to introducing an important construction of groups in this section.

2.1 Normal subgroups

Recall the motivation from before:

Motivation

Again, consider G = Z and H = 100Z = {100n : n ∈ Z}. The cosets of H are

H = {. . . ,−200,−100, 0, 100, 200, . . .}
1 +H = {. . . ,−199,−99, 1, 101, 201, . . .}
2 +H = {. . . ,−198,−98, 2, 102, 202, . . .}

...

99 +H = {. . . ,−101,−1, 99, 199, 299, . . .}.

With our understanding on homomorphisms, this can be understood as follows: we have a map ϕ : Z→ Z/100Z
by “modulo 100”, i.e. x 7→ [x], which has kernel

100Z = {. . . ,−200,−100, 0, 100, 200, . . .}.

What this means is that ϕ is indifferent to the subgroup 100Z of Z:

ϕ(15) = ϕ(2000 + 15) = ϕ(−300 + 15) = ϕ(700 + 15) = · · ·

So Z/100Z is what we get by modding 100.

We claim that Z/100Z should in fact be thought as the quotient of G by H. Indeed, the cosets of H divide G
into equal pieces corresponding to different outputs of ϕ:

0 1 2 99· · ·

100 101 102 199

−100 −99 −98 −1

[0] [1] [2]

· · ·
[99]

G

H

G/H

These pieces will then form a group, which is precisely Z/100Z.

Naturally we want to generalise this to a notion of a quotient group G/H whose elements are cosets of H. This

is indeed the definition, but we have to require H to be the kernel of some homomorphism. Based on the naming of

such subgroups we will also start to use N to notate them.

Definition 2.1 (Normal subgroups)

A subgroup N of G is called normal if it is the kernel of some homomorphism. We write this as N ⊴G.

19



Bendit Chan 2.1 Normal subgroups

Definition 2.2 (Quotient groups)

Let N ⊴G. Then the quotient group G/N is the group with elements as left cosets of N and the operation

(g1N) · (g2N) = (g1g2)N.

Remark. It should be mentioned that by the proof of Lagrange’s theorem, if G is a finite group and N ⊴ G then

|G/N | = |G|/|N | = [G : N ] (the second equality holds even if N is not normal).

Clearly the identity element is eGN = N and the inverse of gN is g−1N . We still have to check that this operation

is well-defined; but let us first try to find better conditions for normal subgroups, instead of abstractly being kernels.

Lemma 2.3

Let G be a group and N ≤ G. The following are equivalent:

(i) N is a normal subgroup of G.

(ii) For all g ∈ G and n ∈ N , gng−1 ∈ N .

(iii) For all g ∈ G, gN = Ng.

Proof. (i ⇒ ii). There is a homomorphism ϕ : G→ H with N = kerϕ. Now for any g ∈ G and n ∈ N ,

ϕ(gng−1) = ϕ(g)ϕ(n)ϕ(g−1) = ϕ(g)ϕ(g)−1 = eH ,

so gng−1 ∈ kerϕ = N .

(ii⇒ iii). For any g ∈ G and n ∈ N we have gn ∈ Ng, so gN ⊆ Ng. Replacing g by g−1 gives the other direction.

(iii ⇒ i). Consider the homomorphism ϕ : G→ G/N by g 7→ gN . The kernel is N since

n ∈ kerϕ ⇐⇒ ϕ(n) = nN = N ⇐⇒ n ∈ N

and thus N is normal.

Lemma 2.3(iii) explains the asymmetry in the definition: although we only considered left cosets, it turns out

that they coincide with right cosets if N is normal.

Example 2.4 (Examples and non-examples of normal subgroups)

• Clearly G and {e} are normal in G.

• Every subgroup of an abelian group is normal, since gng−1 = n ∈ N for any g ∈ G and n ∈ N .

In particular, all subgroups of Z are normal, and hence you can finally understand why Z/nZ has its name!

• The subgroup N = {id, (123), (132)} = ⟨(123)⟩ ≤ S3 is normal, since one can check that

gN = Ng = {(12), (23), (13)} for all g ̸∈ N.

More generally, any subgroup N of index 2 in G is normal: let g ∈ G \N , then G = N ∪ gN = N ∪Ng,
and so gN = Ng = G \N .

• The cyclic group ⟨r⟩ in D2n has index 2, so is normal. However, for n ≥ 3 the subgroup {id, s} ≤ D2n is
not normal because

r−1sr = rn−2s ̸= {e, s}.

Now we can also check that the operation in G/N is well-defined: If for i = 1, 2 we have giN = hiN for some

gi, hi ∈ G, then gi ∈ hiN gives gi = hini for some ni ∈ N . Thus

(g1g2)N = (h1n1h2n2)N = (h1h2(h
−1
2 n1h2)n2)N = (h1h2)N

as h−1
2 n1h2 ∈ N by Lemma 2.3(ii).
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Remark. This also showcases another understanding of quotient groups: we can view G/N as “setting all elements

in N to be eG/N”, so for instance in the equation above (h−1
2 n1h2)n2 just gets absorbed into N .

Example 2.5 (Product group)

Let G,H be groups. We can define a product group G×H where the elements are ordered pairs (g, h) ∈ G×H
and the operation is defined by

(g1, h1) · (g2, h2) = (g1g2, h1h2) ∈ G×H.

One could check that this indeed form a group (with identity (eG, eH)). Now consider

G′ = {(g, eH) : g ∈ G} ∼= G.

Then

• G′ is a subgroup of G×H: This is clear by using the subgroup test in Proposition 1.10.

• G′ is normal in G×H: Pick (n, eH) ∈ G′ and any (g, h) ∈ G×H. Then

(g, h) · (n, eH) · (g, h)−1 = (gng−1, hh−1) = (gng−1, eH) ∈ G′

so by Lemma 2.3 we have G′ ⊴G×H.

Moreover, just as the notation would imply, one can check that

(G×H)/G′ ∼= H,

by using the map (eG, h)G
′ 7→ h (note that (g, h)G′ = (eG, h) · (g, eH)G′ = (eG, h)G

′ for any (g, h) ∈ G×H).

Finally, just for the sake of having a language:

Definition 2.6 (Simple groups)

A group G is called simple if G has no normal subgroups other than {e} and G.

For instance, Z/pZ for a prime p is simple: since it is cyclic any subgroup must have order dividing p, so the only

possible subgroups are {e} and G.

Remark. Simple groups turn out to be the basic building blocks for any finite group. Amazingly, we actually have

a full list of simple groups, but the list is really bizarre; this is one of the biggest proofs in mathematics. Every finite

simple group falls in one of the following:

• Z/pZ for prime p;

• the subgroup An of Sn consisting of “even” permutations for n ≥ 5;

• a simple group of Lie type;

• twenty-six “sporadic” groups which do not fit into any nice family.

Again, we will not explain the groups here, but it is worth noting that the two largest sporadic groups have cute

names: the baby monster group has order

241 · 313 · 56 · 72 · 11 · 13 · 17 · 19 · 23 · 31 · 47 ≈ 4 · 1033

and the monster group (also “friendly giant”) has order

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 ≈ 8 · 1053.

It contains twenty of the sporadic groups (by quotienting), and these twenty groups are called the happy family.

Math is weird.
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2.2 Isomorphism theorems ⋆

Serving as a good practice and for historical reasons, we will now cover four “isomorphism theorems”, which are

related to certain quotient groups. However, in practice I have only seen the first one being used often, so really

these theorems are just put here for completeness.

Theorem 2.7 (First Isomorphism Theorem)

If ϕ : G→ H is a homomorphism, then G/ kerϕ ∼= imϕ.

Remark. Note that kerϕ is a normal subgroup of G by definition, so the quotient group makes sense.

Proof. Define the map

f : G/ kerϕ→ imϕ by g kerϕ 7→ ϕ(g)

which we claim is an isomorphism. We have to check:

• f is well-defined: Suppose g kerϕ = h kerϕ. Then gh−1 kerϕ = kerϕ, or gh−1 ∈ kerϕ. Thus

ϕ(g) = ϕ(gh−1h) = ϕ(gh−1)ϕ(h) = ϕ(h).

• f is a homomorphism: Again take g kerϕ, h kerϕ ∈ G/ kerϕ. Then

f((g kerϕ) · (h kerϕ)) = f(gh kerϕ) = ϕ(gh) = ϕ(g)ϕ(h) = f(g kerϕ)f(h kerϕ).

• f is bijective: Surjectivity is visibly clear. If f(g kerϕ) = eH , then ϕ(g) = eH , or g ∈ kerϕ. Thus ker f =

{kerϕ} = {eG/ kerϕ}. Hence by Lemma 1.36, f is injective.

In fact, the construction of such maps out of a quotient group is extremely common in group theory; in its full

generality every such map can be constructed from the following “universal property” of quotient groups:

Theorem 2.8 (Universal property of quotient groups)

Let N ⊴ G and ϕ : G → H be a homomorphism such that N ⊆ kerϕ. Then there is a unique homomorphism
ϕ̃ : G/N → H such that the diagram

G

G/N H

π

ϕ̃

ϕ

commutes, where π : G→ G/N is the projection map g 7→ gN as in Lemma 2.3.

The proof goes exactly like above, by using ϕ̃ : gN 7→ ϕ(g). In other words:

! Keypoint

To define a map out of a quotient group G/N , define a map out of G which maps N to e.

Pictorially, this means that we only have to give a map of the form:

N

ϕ(N) = eH
ϕ

G
H
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Moving on to second isomorphism theorem, the question in consideration is as follows:

Motivation

Consider again a group G,N ⊴G and H ≤ G. We know that

G/N = {cosets of the form gN}

but how about the set of cosets of the form hN where h ∈ H? Well, a naive guess might be H/N , but N might
not be a normal subgroup of H; in fact, N might not even be a subgroup of H! To fix this, one could either:

• consider H ∩N instead, which would be a normal subgroup of H;

• consider “the smallest subgroup of G containing H and N”, then quotienting N .

The second isomorphism theorem assures that these two approaches give “the same answer”.

Let us now make this precise. Firstly, we have to define what is the smallest subgroup containing both H and N :

Definition 2.9 (Frobenius product)

Let S and T be subsets of a group G. We define

ST := {st : s ∈ S, t ∈ T}

to be the (Frobenius) product of S and T .

Caution: This is unfortunately very confusing with the product of groups G×H. We will hence always use × if this

is the case, and will refer to the above product as the Frobenius product if needed.

Example 2.10

• If S = {g} and T = N ⊴G where g ∈ G, then ST = gN .

• When G = S3, S = {id, (12)} and T = {id, (23)}, we have

ST = {id, (12), (23), (123)}.

Note that ST is not a subgroup of G, since (123)−1 = (321) ̸∈ ST .

If you have seen some linear algebra before, this is exactly the analogy of the sum of two subspaces. However,

what’s different here is that the product of two subgroups are not necessarily a subgroup, as we have seen

in the above example. Luckily, this is the case in most of our considerations:

Proposition 2.11

Suppose H and N are subgroups of a group G.

(i) If N is normal then HN ≤ G.

(ii) If both H and N are normal then HN ⊴G.

Proof. (i). HN is non-empty, and we have

(h1n1)(h2n2) = h1h2n
′
1n2 ∈ HN

for some n′
1 ∈ N by Lemma 2.3, since n1h2 ∈ Nh2 = h2N . Thus HN is closed under the operation. Similarly,

(hn)−1 = n−1h−1 ∈ Nh−1 = h−1N ⊆ HN.

(ii). We further have gHNg−1 = gHg−1 · gNg−1 = HN , so HN is normal.
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We are ready to state the second isomorphism theorem now. Clearly, H,N ⊆ HN and it is the smallest subgroup

of G to contain both H and N (by the operation being closed). Hence, our motivation translates to:

Theorem 2.12 (Second Isomorphism Theorem)

If H ≤ G and N ⊴G, then H/H ∩N ∼= HN/N .

Proof. By the essence of the universal property, we define the map

ϕ : H → G/N by h 7→ hN

with kerϕ = H ∩N since hN = N if and only if h ∈ N . Thus H ∩N ⊴H.

But imϕ = {hN : h ∈ H}, which is exactly equal to HN/N since (⊆) hN = heN ∈ HN/N and (⊇) hnN = hN

for any h ∈ H and n ∈ N . The first isomorphism theorem then implies the result.

Remark. This theorem is sometimes called the diamond theorem due to the shape of the lattice of subgroups:

G

HN

H N

H ∩N

{eG}

where a line means that the group below is a subgroup of the group above.

To continue, the third isomorphism theorem will be skipped since we will soon see that it is a corollary of the

fourth. The motivation of it again comes from a simple consideration:

Motivation

Let G be a group and N ⊴G. The main question is:

What are the subgroups of G/N?

Taking the example of G = D8 and N = ⟨r2⟩ (and noticing that sr2s−1 = (srs−1)2 = (r3)2 = r2 ∈ N , so
N ⊴G), one can compute their respective lattice of subgroups:

D8 D8/⟨r2⟩

⟨r2, s⟩ ⟨r⟩ ⟨r2, rs⟩ ⟨[s]⟩ ⟨[r]⟩ ⟨[rs]⟩

⟨s⟩ ⟨r2s⟩ ⟨r2⟩ ⟨rs⟩ ⟨r3s⟩ {e}

{e}

which can be computed by using Lagrange’s theorem, that D8/⟨r2⟩ has order 4, and Proposition 1.39.
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From the above example, one can probably spot a pattern; the precise statement is as follows:

Theorem 2.13 (Fourth Isomorphism Theorem)

Let G be a group and N⊴G. Write G := G/N and ϕ : G→ G be the canonical map. Then there is a one-to-one
correspondence

{subgroups of G containing N} 1:1←→ {subgroups of G}

under which a subgroup H of G corresponds to H := ϕ(H) ≤ G. Moreover,

(i) H1 ⊆ H2 if and only if H1 ⊆ H2, in which case [H2 : H1] = [H1 : H2].

(ii) H ⊴G if and only if H ⊴G, in which case there is an isomorphism G/H ∼= G/H.

Proof. Note that the correspondence makes sense, because pre-images of subgroups ofG are subgroups ofG containing

N ; indeed, if H ≤ G then ϕ(n) = N ∈ H for any n ∈ N and so n ∈ ϕ−1(H). Now:

(i). (⇒). If H1 ⊆ H2 then

H1 = {hN : h ∈ H1} ⊆ {hN : h ∈ H2} = H2.

as H1 and H2 both contains N .

(⇐). Suppose H1 ⊆ H2, then for every h1 ∈ H1 there exists h2 ∈ H2 such that h1N = h2N , and thus h1 = h2n

for some n ∈ N ⊆ H2. But then h1 ∈ H2 and so H1 ⊆ H2.

Now the final statement comes from

[H2 : H1] =
|H2|
|H1|

=
|H2|/|N |
|H1|/|N |

=
|H2|
|H1|

= [H2 : H1].

(ii). (⇒). If H ⊴G then g−1hg ∈ H for all h ∈ H and g ∈ G. Thus

(gN)−1(hN)(gN) = g−1hgN ∈ H.

(⇐). We have (gN)−1(hN)(gN) = h′N for any g ∈ G, h ∈ H and for some h′ ∈ H, so g−1hg = h′n for some

n ∈ N . But N ⊆ H and hence h′n ∈ H and H ⊴G.

The isomorphism is defined by gH 7→ ϕ(g)H, which is well-defined by the universal property. It is easy to

check that this map is bijective, which completes the proof.

Remark. This theorem is sometimes known as the correspondence theorem. If we rewrite part (ii) as G/H ∼=
(G/N)/(H/N), then we get the third isomorphism theorem.

Example 2.14

To end the section, let us give some examples of this theorem in use:

• If N ⊴G has order 5 and G/N ∼= S4, then

– |G| = 120 by Lagrange’s theorem.

– G/N has four subgroups of order 3 (in S4 they are ⟨(123)⟩, . . . , ⟨(234)⟩) which are not normal in
G/N , so G has four non-normal subgroups of order 15 containing N .

– G has a normal subgroup of order 20 corresponding to {id, (12)(34), (13)(24), (14)(23)}⊴ S4
∼= G/N .

• One can show that N ⊴G is maximal (i.e. N ≤ H < G implies N = H) iff G/N is simple.
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3 Generators and Free Groups

Let us now revisit Definition 1.22 and develop the theory of generators and free groups.

Motivation

If G is a group and S ⊆ G is a subset, an alternative definition of ⟨S⟩ is

⟨S⟩ = smallest subgroup of G containing S.

However, this is informal: what is “smallest”? What if two different subgroups of the same order both contain
S? Luckily, that cannot happen: if S ⊆ H1, H2 then we have S ⊆ H1 ∩H2, which is again a subgroup.

We can now give a formal definition:

Definition 3.1 (Subgroup generated by a set)

Let G be a group and S ⊆ G. Then

⟨S⟩ =
⋂

S⊆H≤G

H

is the subgroup of G generated by S. Moreover,

• If ⟨S⟩ = G for some S ⊆ G then we say S generates G.

• If ⟨S⟩ = G for some finite S ⊆ G then we say G is finitely generated.

This definition takes care of both the existence and uniqueness of ⟨S⟩. Note that ⟨G⟩ = G, so any finite group is

finitely generated.

This is all good, but in practice we will almost surely use Definition 1.22 to work out the elements in a subgroup

generated by a set. In addition, Definition 1.22 doesn’t rely on the structure of G, but only the relations on the

elements of S, i.e. we can create new groups without specifying what G is. For instance, D2n can be described as a

group with generators r, s and relations

rn = s2 = srsr = id .

This motivates the following section, which is the construction of free groups and presentations.

3.1 Free groups

The goal in this section is to define a group F (S) for any set S without specifying S ⊆ G for some group G. The

elements will be:

Definition 3.2 (Word)

A word w is a finite sequence x1, . . . , xm where m ≥ 0 and each xi ∈ S ∪S−1. We write w as x1x2 . . . xm. Note
that the empty sequence, i.e. when m = 0, is a word, denoted ∅ (or sometimes, e).

Caution: As before, the set S = {x−1 : x ∈ S} is the set of “inverses” of S; but that doesn’t mean anything as they

are just symbols at this stage, as S is not necessarily a subset of a group. By convention we require S ∩ S−1 = ∅.

Example 3.3

Let S = {a, b, c} be any three-element set. Then

• ab, aabac, b are words of S.

• aa−1c and c are also words, but they are unequal words at this step (of course, we would want them
to be equal at last).

• ab and ba are also unequal words, as usual.
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To proceed, we want to identify words like aa−1c and c, so that they become the same word in the group F (S).

We define:

Definition 3.4 (Reduced words)

A word is said to be reduced if it contains no pairs of the form aa−1 or a−1a for any a ∈ S.

Starting with a word w, we can then perform a finite sequence of cancellations to arrive at a reduced word, which

will be called the reduced form w0 of w. For instance,

a−1bb−1aba−1a −→ a−1aba−1a −→ a−1ab −→ b.

Note that a reduced form always exists, as each time we delete a−1a or aa−1 the length of the word decreases by

2 and the length is always finite. In fact it is also unique:

Proposition 3.5

There is only one reduced form of a word w.

Proof. We induct on the length of the word. If w is reduced then there is nothing to prove. Otherwise, there is a

pair aa−1 or a−1a in w, which we assume to be the first as the argument is the same.

If two reduced forms w1 and w2 of w are obtained by cancelling aa−1 first, then w1 = w2 by induction hypothesis.

Similarly, if w1 and w2 are both obtained by a sequence of cancellation where aa−1 is cancelled at some point, then

w1 = w2 as the result is the same if we cancel aa−1 first.

Finally, consider a reduced word w0 obtained by a sequence in which there are no direct cancellations of aa−1.

As this pair does not remain in w0, at least one of a or a−1 must be cancelled at some point. We only have two cases:

· · · a−1aa−1 · · · or · · · aa−1a · · ·

where the underlined pair is the one being cancelled. Yet in both cases the result is the same if we have cancelled

the pair aa−1 instead, so the result follows from the case already proven.

Hence, from now on, we say w,w′ are equivalent, denoted w ∼ w′, if they have the same reduced form. It is

clear that this is an equivalence relation. We can now define:

Definition 3.6 (Free groups)

The concatenation of two words x1 . . . xm and y1 . . . yn is the word

x1 . . . xmy1 . . . yn.

Given a set S, the free group F (S) on the set S then consists of the equivalence classes of words of S with the
group operation as concatenation.

Of course, we have to check:

• If w ∼ w′ and v ∼ v′, then wv ∼ w′v′: We have w ∼ w0 and v ∼ v0, so the reduced form of wv can be obtained

by first reducing w and v to get w0v0, i.e. wv ∼ w0v0. Yet w
′ ∼ w0 and v′ ∼ v0 too so we have w′v′ ∼ w0v0.

• Identity: Use the word ∅.

• Inverse: Let w = x1x2 . . . xn be a word (representing the equivalence class [w]), then

(x1x2 . . . xn)(x
−1
n . . . x−1

2 x−1
1 ) ∼ ∅.

Hence F (S) is indeed a group.
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Example 3.7

Again take S = {a, b, c}. Then F (S) is what we get by appending finitely many copies of a, b, c, a−1, b−1 and
c−1, with all cancellations done. For instance,

aba−1b−1, c−1, ∅ ∈ F (S).

As usual, these are representatives of their equivalence class in F (S), so we have a = abb−1 in F (S), etc.

Remark. Since each equivalence class [w] has a representative w0 ∈ [w], some might alternatively think of F (S) as

the group of reduced words. Then, in this sense abb−1 ̸∈ F (S) since it is not reduced.

So, as a slogan to remember about free groups: put elements of S∪S−1 in a box, seal it tightly, and shake

vigorously. We then get the free group F (S).

To further understand free groups, let us now state the so-called universal property of free groups. Similar to

that of quotient groups, this following property completely characterises what a free group is.

Theorem 3.8 (Universal property of free groups)

Given a set S, a group G, and a function f : S → G, there is a unique homomorphism ϕ : F (S)→ G such that
the following diagram commutes:

S

F (S) G

f
ι

ϕ

where ι : S → F (S) is the inclusion map, i.e. it maps any a ∈ S to a ∈ F (S).

If you recall the way to think about universal properties after Theorem 2.8, we get a similar statement:

! Keypoint

To define a map out of a free group F (S), just define a map out of S.

Proof. Define

ϕ : F (S)→ G by xϵ1
1 . . . xϵn

n 7→ f(x1)
ϵ1 . . . f(xn)

ϵn

where xi ∈ S and ϵi ∈ {1,−1} for each i (we need the ϵi’s since f is only defined on S, not S ∪ S−1). We claim that

ϕ is the unique, well-defined homomorphism.

• ϕ is well-defined: If w ∼ w′, then ϕ(w) = ϕ(w′) by performing the same set of cancellations on w and w′ to

obtain w0, the common reduced word of w and w′.

• ϕ is a homomorphism: Clear.

• ϕ is unique: For each x ∈ S, we have ϕ(x) = f(x). Hence ϕ must be the one defined above, since a homomor-

phism between groups is determined by what it does to a set of generators.

Now we can finally answer why we care about free groups:

Corollary 3.9

Every group is isomorphic to a quotient of a free group.

Proof. Pick a set S of generators of G (e.g. S = G). By Theorem 3.8, the map f : S → G by a 7→ a define a map

ϕ : F (S) → G. Now imϕ ≤ G contains all elements of S, so it must be equal to G. Hence G = imϕ ∼= F (S)/ kerϕ

by first isomorphism theorem.
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3.2 Presentations

Recall from Section 1.5 that every finite group is isomorphic to some subgroup of Sn, which motivated our study

in symmetric groups. Similarly, we now see that every group is a quotient of a free group, so it only makes sense to

devote the following section to study such objects, which will be known as presentations.

Motivation

To motivate the definition of presentations, consider

Z ∼= F (a) ∼= ⟨a⟩

i.e. the group Z which is isomorphic to the free group generated by one element.

There’s one issue: the generators usually satisfy certain properties. For example, Z/100Z is also generated
by one element x, but this x has the property that x100 = 1. This motivates us to write

Z/100Z = ⟨x | x100 = 1⟩ = ⟨x⟩
/
⟨x100⟩.

As we can see, this group is a quotient of a free group Z.

To make this rigorous, we need a technical definition for arbitrary groups:

Definition 3.10 (Normal subgroup generated by a set)

Let G be a group and S ⊆ G be a subset. The normal subgroup generated by S is defined as

⟨⟨S⟩⟩ :=
〈 ⋃

g∈G

gSg−1
〉
.

Clearly this is a subgroup. We have to check that this is indeed normal:

Proof. Let us temporarily say that a subset S ⊆ G is normal if gSg−1 ⊆ S for all g ∈ G. The main step is:

Claim

If S is normal, then ⟨S⟩ ≤ G is normal.

Proof. Let a ∈ ⟨S⟩, say a = x1 · · ·xm with xi ∈ S ∪ S−1. Then

gag−1 = (gx1g
−1) . . . (gxmg−1).

As S is normal, each gxig
−1 (or its inverse) lies in S, so g⟨S⟩g−1 ∈ ⟨S⟩.

Now clearly for any subset S ⊆ G,
⋃

g∈G gSg−1 is normal (as a set). Thus by the claim we obtain the result.

Now we might define the aforementioned notion:

Definition 3.11 (Presentations)

Let S be a set and R ⊆ F (S). The group G = F (S)/⟨⟨R⟩⟩ is said to have S as generators and R as relations.
One also says that the pair (S,R) is a presentation for G, and denotes G by ⟨S | R⟩.

Hence, the group

Z/100Z = ⟨x | x100⟩

has generator x and relation x100. The above is a presentation of Z/100Z.

Remark. As an abuse of notation, we sometimes write an equal sign in the relations, since that is what happens

when we quotient by ⟨⟨R⟩⟩, i.e. the canonical map F (S) → F (S)/⟨⟨R⟩⟩ maps everything in R to the identity; so for

instance if aba−1b−1 ∈ R then we would have ab = ba in ⟨S | R⟩.
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This notation allows us to describe groups that we know in a compact manner, but also create new groups:

Example 3.12 (Examples of presentations)

Here is a plethora of examples:

• If S = {x1, . . . , xn}, then the free group F (S) has presentation ⟨x1, . . . , xn⟩.

• As above, the dihedral group has presentation D2n = ⟨r, s | rn, s2, srsr⟩.

• The Klein four group can be written as

K4 = ⟨a, b | a2 = b2 = e, ab = ba⟩

Indeed, under these relations, we have

F ({a, b})/⟨⟨R⟩⟩ = {[e], [a], [b], [ab]}

and clearly [a], [b] and [ab] all have order 2, so we indeed have the above presentation.

• Let G = ⟨s, t | s3t, t3, s4⟩. Then G = {e} since

s = ss3t = s4t = t

e = s3tt−3 = s3ss−3 = s.

• The quaternion group is defined as

Q8 = ⟨a, b | a4 = e, a2 = b2, ba = a3b⟩
= {e, a, a2, a3, b, ab, a2b, a3b}.

The group can also be described by the quaternion numbers, hence the name: we can write

Q8 = {±1,±i,±j,±k}

with the multiplication defined by

i2 = j2 = −1, ij = −ji = k.

The map by i 7→ a, j 7→ b exhibits an isomorphism of this form to the presentation above.

• Two elements a and b in a group commute if and only if their commutator [a, b] = aba−1b−1 is the
identity. The free abelian group on generators a1, . . . , an is then defined as

⟨a1, . . . , an | [ai, aj ] ∀i ̸= j⟩

Note that in this group we indeed have aiaj = ajai for all i, j, so it is abelian.

Caution: Note that presentations of a group is not unique; for instance, one also have

D2n = ⟨a, b | a2, b2, (ab)n⟩

which can be shown by considering the map a 7→ s, b 7→ rs.

Geometrically, this means the symmetries of an n-gon can be generated by two reflections:

s 1

5

4

3

2

rs 2

1

5

4

3
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To end, we note that analogous to free groups, presentations also have a universal property:

Theorem 3.13 (Universal property of presentations)

Let G = ⟨S | R⟩ be a group. For any group H and function f : S → H sending R to eH , there exists a unique
homomorphism ϕ : G→ H such that the following diagram commutes:

S

G H

f

ϕ

where S → G is the canonical map a 7→ [a].

This looks very similar to Theorem 2.8 (the universal property of quotient groups); but this should not be

surprising: after all ⟨S | R⟩ is the quotient group F (S)/⟨⟨R⟩⟩. The proof follows swiftly:

Proof. The whole picture is:

S

F (S) H

G

ι
f

π
ϕ

ϕ̃

By the universal property of free groups, f extends to a homomorphism ϕ̃ : F (S) → H. By assumption,

ϕ̃ ◦ ι(R) = f(R) = eH , so ι(R) ⊆ ker ϕ̃. Therefore ⟨⟨ι(R)⟩⟩ = ⟨⟨R⟩⟩⊴ F (S) is contained in ker ϕ̃.

By the universal property of quotient groups, this then gives the desired map ϕ. The uniqueness follows from the

fact that we know the map on a set of generators for G.
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4 Group Actions

Historically, a group was a subgroup of a symmetric group (as we have discussed under Cayley’s theorem). Hence,

elements of a group can naturally be associated to an “operation”: for instance in D10, the elements are associated

to rotations and reflections on the vertices of an n-gon;

id 1

2
3

4
5

r 5

1
2

3
4

s 1

5
4

3
2

sr 5

4
3

2
1

rs 2

1
5

4
3

despite the actual elements being abstract symbols r, s, rs, etc.

In a more general setting, elements of a group G might “operate” on a set X with more structure, such as a

vector space. This then provides more tools to study G, which are often insightful. These operations are called

group actions, which we shall introduce now.

4.1 Definitions and Examples

There are many ways to define a group action; but the definition we shall use is:

Definition 4.1 (Group action)

Let X be a set and G be a group. A group action is a binary operation

· : G×X → X

which maps (g, x) to an element g · x, such that

• eG · x = x for all x ∈ X;

• (g1g2) · x = g1 · (g2 · x) for all g1, g2 ∈ G and x ∈ X.

The conditions imply that, for each g ∈ G, we have a map:

gL : X → X, x 7→ g · x,

which is also bijective, as it has inverse (g−1)L. Thus gL ∈ Sym(X), the set of all bijective functions X → X.

Now the second condition says that g 7→ gL is a homomorphism, as

(gh)L(x) = (gh) · x = g · (h · x) = gL ◦ hL(x).

Thus a group action of G on X gives a map

G→ Sym(X), g 7→ gL

and conversely every such homomorphism defines a group action. Therefore:

Remark. From now on, we might use the two notations interchangeably and just denote gL as g. So given a group

action, g · x and g(x) mean the same thing (with the latter viewing g as a map X → X).

In other words,

! Keypoint

A group action views each g ∈ G as a permutation of elements of X.
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Example 4.2 (Examples of group actions)

• The dihedral group D2n acts on the set of vertices of an n-gon.

• The group (Z/4Z,+) acts on the xy-plane R2 by 1 · (x, y) = (y,−x) i.e. it is a rotation by 90◦.

• The group Sn acts on X = {1, 2, . . . , n} by applying the permutation: σ · x = σ(x). More generally, any
subgroup of Sn acts on X the same way.

• The group GLn(R) acts on Rn by applying the linear transformation, i.e.

GLn(R)× Rn → GLn(R), A · v 7→ Av

Notice that this action can be viewed as a map GLn(R) → Sym(Rn) as above, particularly because any
A ∈ GLn(R) is invertible, so v 7→ Av is bijective.

• Any group G acts on itself by defining

G×G→ G, g · h = gh.

Note that the two axioms follow from the group axioms of G (identity and associativity).

Note that group actions are not unique: any group G also acts on itself by conjugation,

G×G→ G, g · h = ghg−1.

Definition 4.3 (Faithful)

An action of a group G on a set X is faithful if the homomorphism G→ Sym(X) is injective, i.e.

g · x = x for all x ∈ X =⇒ g = eG.

Caution: The definition is not saying that the map g(·) is injective. Indeed, g(·) ∈ Sym(X), so it is always bijective.

Instead, it is asking whether g 7→ g(·) is injective, i.e. if g(·) and h(·) are equal as maps, can we conclude that g = h?

All the examples above are faithful actions, except for the conjugation action: if g · h = h for any h ∈ G we can

only conclude that gh = hg, i.e. g commutes with every element in G.

In fact, the set of such elements is called the centre of G, on which we will disucss more later:

Definition 4.4 (Centre)

Let G be a group. The centre of G is defined as the set

Z(G) := {g ∈ G : gh = hg for all h ∈ G}

The theory now already allows us to phrase the proof of Cayley’s theorem more concisely; recall:

Theorem 1.40 (Cayley ⋆)

If G is a finite group, then G is isomorphic to a subgroup of Sn where n = |G|.

Proof. Consider G acting on itself by left multiplication, i.e.

g · h 7→ gh.

This is a faithful action, so the induced homomorphism G→ Sym(G) is injective. The proof follows similarly to the

original proof of the theorem.

So, when we were proving Cayley’s theorem, we accidentally discovered a group action! It was exactly the map

G→ Sym(G) via g 7→ ϕg where ϕg : x 7→ gx.
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4.2 Orbits and stabilisers

Given a group action G on X, we can define an equivalence relation ∼ on X as follows:

x ∼ y ⇐⇒ x = g · y for some g ∈ G,

i.e. “one can be obtained from the other by an action”. Let’s quickly check that it is indeed an equivalence relation:

• Reflexive: x ∼ x because x = eG · x;

• Symmetric: if x = g · y then g−1 · x = (g−1g) · y = y;

• Transitive: if y = g · x, z = g′ · y then z = g′ · (g · x) = (g′g) · x.

We can hence define:

Definition 4.5 (Orbits)

Given a group action G on X, the G-orbit of an element x ∈ X is the equivalence class of x:

G · x = [x]∼ = {y ∈ G : x ∼ y} = {g · x : g ∈ G} ⊆ X.

As ∼ is an equivalence relation, the G-orbits partition X, i.e. any x ∈ X belongs to exactly one orbit G · x (but

G · x might be equal to G · y for some x ̸= y). We sometimes write X/G for the set of orbits.

It turns out that a very closely related concept is:

Definition 4.6 (Stabiliser)

Given a group action G on X, the stabliser of x ∈ X is the set of g ∈ G which fix x, i.e.

StabG(x) := {g ∈ G : g · x = x} ⊆ G.

It can be easily checked that StabG(x) is a subgroup of G for any x.

Remark. If G is clear from the context, we will simply write Stab(x). The notations StG(x) or Gx are also seen.

Example 4.7 (Examples of orbits and stabilisers)

• Uninteresting example: consider G acting on itself by left multiplication, then for any g ∈ G,

G · g = G, Stab(g) = {eG}

as g ∼ h for any h by g = (gh−1)h, and gh = h implies h = eG.

• Suppose G acts on X, and let g ∈ G be an element of order n. Then ⟨g⟩ also acts on X.

The ⟨g⟩-orbits are the sets of the form

⟨g⟩ · x = {x, g · x, . . . , gn−1 · x}.

(Note that these elements need not be distinct, so the set might contain fewer than n elements.)

• Let Sn act on X = {1, 2, . . . , n}. Then:

– The only Sn-orbit is X, as (1x) sends 1 to any x ∈ X, i.e. 1 ∼ x.

– The stabiliser of x ∈ X consists of the permutations f which fix x, i.e. the ones with x ̸∈ supp f .

Before we move on, let’s focus on a particularly important example, which is of the action of conjugations as

we’ve mentioned above. Recall that means the action g · h 7→ ghg−1.
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• The G-orbits are called conjugacy classes: for x ∈ G, the conjugacy class of x is

xG = {gxg−1 : g ∈ G},

i.e. it consists of all possible conjugations of x.

• The stabilisers and called centralisers: for x ∈ G, the centraliser of x is

CG(x) = {g ∈ G : gx = xg},

i.e. it consists of all elements of G that commute with x.

Example 4.8 (Use of conjugacy classes and centralisers)

Many concepts can be described concisely by conjugacy classes and centralisers. For instance:

• A subgroup H ≤ G is normal iff for all h ∈ H, hG ⊆ H.

• The intersection ⋂
h∈G

CG(h) = {g ∈ G : gh = hg for all h ∈ G} = Z(G)

is the centre of G.

• If you are familiar with linear algebra, the conjugacy classes in G = GLn(F ) are called similarity classes,
and the theory of rational canonical forms provides a set of unique representatives for the conjugacy class.

Let’s now proceed to prove some results about orbits and stabilisers. The following lemma says that the stabilisers

of elements in the same G-orbit are conjugate in G:

Lemma 4.9

For any g ∈ G and x ∈ X, Stab(g · x) = g Stab(x)g−1.

Proof. Certainly, if h ∈ Stab(x), i.e. h · x = x, then

(ghg−1) · (g · x) = g · (h · x) = g · x

which proves (⊇). Conversely, if h · (g · x) = g · x, then

(g−1hg) · x = g−1 · (h · (g · x)) = g−1 · (g · x) = x,

and so g−1hg ∈ Stab(x), i.e. h ∈ g Stab(x)g−1.

We also see from the definition that⋂
x∈X

Stab(x) = {g ∈ G : g · x = x for all x ∈ X} = ker(G→ Sym(X)),

so the action is faithful if and only if
⋂
Stab(x) = {eG}.

The main result of this section is the so-called orbit-stabiliser theorem, connecting the two notions:

Theorem 4.10 (Orbit-stabiliser theorem)

Suppose G acts on X. For any x ∈ X, the map (from the set of left cosets, not a quotient group)

G/Stab(x)→ G · x, g Stab(x) 7→ g · x

is a bijection. In particular, if G is finite, then |G · x| = [G : Stab(x)] = |G|/|Stab(x)|.
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Proof. The map is well-defined for if h ∈ Stab(x), then (gh) · x = g · x. It is clearly surjective, and it is injective as

g · x = h · x =⇒ (g−1h) · x = x =⇒ g Stab(x) = hStab(x).

Hence the given map is a bijection. The second statement follows easily.

Motivation

I like to remember this theorem as “telling you the size of an orbit”. Pictorially:

eG g1 g2 gn· · ·

x g1 · x g2 · x
· · ·

gn · x

G

Stab(x)

G · x ⊆ X

Eah coset g Stab(x) specifies an element of G · x, namely g · x. The fact that Stab(x) is a stabiliser guarantees
that it is irrelavant which representative we pick.

Note that as a consequence, when X is a finite and we write X as a disjoint union of G-orbits:

X =

n⋃
i=1

G · xi,

then we have an equation for the size of |X|:

|X| =
n∑

i=1

|G · xi| =
n∑

i=1

[G : Stab(xi)]. (1)

This equation is more often used in practice.

The rest of the section will be devoted to study some applications of the orbit-stabiliser theorem. By considering

the action of G on itself by conjugation, we get the following.

Proposition 4.11 (The class equation)

Let G is a finite group. Then G is a disjoint union of conjugacy classes xG
1 , . . . , x

G
n , and

|G| =
n∑

i=1

[G : CG(xi)] = |Z(G)|+
∑

|xG
i |≠1

[G : CG(xi)].

Proof. The first statement and equality comes directly from (1). Observing that |xG| = 1 iff gxg−1 = x for all g ∈ G

iff x ∈ Z(G) gives the second equality, by taking out all conjugacy classes of the form {x} where x ∈ Z(G).

Remark. The number of distinct conjugacy classes, or n in the statement, is called the class number of the group.
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Theorem 4.12 (Cauchy ⋆)

If a prime p divides |G|, then G contains an element of order p.

Proof. The key lemma is to first show the case when G is abelian:

Claim

If G is abelian, then the statement is true.

Proof. We induct on |G|. The base case |G| = p is trivial. It suffices to show that G contains an element x whose

order is pk for some k ∈ N, because then ordxk = p. Let eG ̸= g ∈ G.

If p | ord g then we are done. Otherwise, p | |G/⟨g⟩|, in which case there exists (by induction) an element

h⟨g⟩ ∈ G/⟨g⟩ with order divisible by p. But then

hordh = e =⇒ (h⟨g⟩)ordh = ⟨g⟩,

so p | ord(h⟨g⟩) | ordh. This completes the proof.

The general proof is also an induction on |G|. If there exists x ̸∈ Z(G) such that p does not divide [G : CG(x)] =

|G|/|CG(x)|, then p divides |CG(x)| < |G| and we can apply induction to find an element of order p in CG(x).

Otherwise, p | [G : CG(x)] for any x ̸∈ Z(G), i.e. all the terms in the sum of the class equation (second form).

Hence p | |Z(G)|. But Z(G) is clearly abelian, so the above claim finishes the proof.

Remark. There is also another well-known proof by considering the action of Cp, the cyclic group of order p, on

Gp, the set of p-tuples of elements in G, i.e.

Gp := {(g1, . . . , gp) : gi ∈ G for all i}.

I think the proof presented above is much more natural to think of.

Example 4.13 (Groups with order 2p)

For a cool application, let us try to classify a family of groups, which are groups with order 2p where p ̸= 2.

• From Cauchy’s theorem, such a G contains elements s and r of order 2 and p respectively.

• Let H = ⟨r⟩. Then H is of index 2, and so is normal by Example 2.4.

• Obviously s ̸= H, so G = H ∪Hs:

G = {eG, r, . . . , rp−1, s, rs, . . . , rp−1s}.

This looks familiar – it looks like the dihedral group D2p! We just have to know how r and s interacts.

• As H is normal, srs = srs−1 = ri for some i. Since s2 = e,

r = s2rs2 = s(srs)s = ri
2

=⇒ i2 ≡ 1 (mod p)

as ord r = p. As Z/pZ is a field, the only such i’s are ±1:

– If i = 1, then sr = rs, so G is commutative (as it is generated by commuting elements). One can
then see that rs has order 2p (as p is odd), so G = ⟨rs⟩.

– If i = −1, then srs = r−1 so G = ⟨r, s | rp, s2, srsr⟩ = D2p.

We conclude that the only such group is either cyclic or dihedral.
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Cauchy’s theorem also motivates the definition of a specific type of groups:

Definition 4.14 (p-groups)

Let p be a prime. A finite group G is called a p-group if |G| is a power of p.

Alternatively, by Lagrange’s and Cauchy’s theorem, a finite group G is a p-group if and only if the order of every

element of G is a power of p.

To end the section, arbitrary p-groups have very special properties, as showcased below.

Theorem 4.15

Every non-trivial finite p-group G has non-trivial centre, i.e. Z(G) ̸= {eG}.

Proof. By assumption, |G| is a power of p, so [G : CG(x)] = |G|/|CG(x)| ̸= 1 is also a power of p for all x ̸∈ Z(G).

As p divides every term in the sum of the class equation (second form), it must divide |Z(G)| also.

Corollary 4.16

A group of order pn has normal subgroups of order pm for all m ≤ n.

Proof. We induct on n. By Theorem 4.15 and Cauchy’s theorem, Z(G) contains an element g of order p, so N := ⟨g⟩
is a normal subgroup (as g ∈ Z(G)) of G of order p. Now the induction hypothesis allows us to assume the result

for G/N , and the fourth isomorphism theorem (Theorem 2.13) implies the result.

4.3 Transitivity

We now focus on a specific type of group action, called transitive actions. These actions can be further classified

into primitive and inprimitive; they will be discussed in the next optional section. For now, transitivity allows us

to “focus on one orbit only”, which creates new results to, say, count the number of orbits.

Definition 4.17 (Transitive actions)

Let G act on X. We say G act transitively on X if there is only one orbit, i.e. X = G · x for some x.

As we have seen before, X is partitioned by the G-orbits:

X

x

g

and we can understand each orbit as “all possible points x can go to under some g”. Hence:

! Keypoint

An action is transitive if there exists x ∈ X which can “go to every point in X”.

In which case we can also see any x would work, since they all live in the same orbit. So G acts transitively iff

X = G · x for any x ∈ X.
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Example 4.18 (Examples of transitive actions)

• The action of G on itself by left multiplication is transitive, as we have seen in Example 4.7.

• However, the action of G on itself by conjugation is not transitive if G ̸= {e}: suppose there is only one
G-orbit (i.e. conjugacy class), then G = eG, so for any g ∈ G we must have

g = heh−1 = e for some h ∈ G.

• The action of G on G/H where H ≤ G is transitive (again, G/H means just the set of left cosets, not
necessarily a quotient group). The action is defined via

G× (G/H)→ G/H, g · xH = gxH.

Indeed, it is clear that G ·H = G/H.

To proceed, let us define a new notion:

Definition 4.19 (Fixed points)

Let G act on X. An element x ∈ X is called a fixed point of g ∈ G if g · x = x. We write

Fix(g) = {x ∈ X : g · x = x} ⊆ X

for the set of fixed points of g.

Caution: This looks dangerously similar to the definition of stabilisers, but note that Fix(g) ⊆ X, while Stab(x) ⊆ G.

In fact, these two notions are closely related. Consider the set of pairs (g, x) such that g · x = x. Then:

{(g, x) ∈ G×X : g · x = x}

Stab(x) Fix(g)

πG πX

i.e. if we project to the G component we get Stab(x), and vice versa for the X component and Fix(g).

Now under a transitive action, the orbit-stabiliser theorem simplifies to

|X| = [G : Stab(x)] = |G|/|Stab(x)| (2)

for any x ∈ X. Using the above relation, we get the following result:

Proposition 4.20

If G acts transitively on X where both G and X are finite, then

|G| =
∑
g∈G

|Fix(g)|.

Proof. By the diagram above, we can count the size of the top set in both ways:∑
x∈X

|Stab(x)| = |{(g, x) ∈ G×X : g · x = x}| =
∑
g∈G

|Fix(g)|.

Then by (2), ∑
x∈X

|Stab(x)| =
∑
x∈X

|G|
|X|

= |X| · |G|
|X|

= |G|.

The result follows.
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In particular, this also implies that for |X| ≥ 2, there is at least one g ∈ G which has no fixed points: or else∑
|Fix(g)| ≥ |G|, and Fix(eG) = X has more than one element, so

∑
|Fix(g)| > |G|, contradiction.

We can generalise the result, which gives the crux of this section: counting the number of orbits.

Corollary 4.21 (Burnside’s lemma)

Let G act on X. The number of G-orbits, |X/G|, is equal to

1

|G|
∑
g∈G

|Fix(g)|.

Proof. Write X as a disjoint union of G-orbits,

X =

n⋃
i=1

G · xi,

then the number of fixed points of g ∈ G is the sum of the number of fixed points of g in each G · xi. But note that

G acts on each G · xi transitively, so Proposition 4.20 applies and thus

|X/G| =
n∑

i=1

1 =

n∑
i=1

(
1

|G|
∑

g∈G·xi

|Fix(g)|

)
=

1

|G|
∑
g∈G

|Fix(g)|.

Remark. As usual, this lemma was not actually proven by Burnside; Cauchy proved it first, and thus it is sometimes

called the lemma that is not Burnside’s.

The significance of Burnside’s lemma is that we can calculate the number of orbits more easily, since the number

of fixed points are often easy to compute.

Example 4.22

Consider when G = ⟨σ⟩ ≤ S5 where σ = (12)(345), and X = {1, 2, 3, 4, 5}. We have:

g id σ1 σ2 σ3 σ4 σ5

Fix(g) X ∅ {1, 2} {1, 2, 3} {1, 2} ∅

Hence, the number of orbits, which is equal to the average number of fixed points by Burnside’s lemma, is

|X/G| = 5 + 0 + 2 + 3 + 2 + 0

6
= 2.

Indeed, the two orbits are G · 1 = {1, 2} and G · 3 = {3, 4, 5}.

Remark. By orbit-stabiliser we also have a G-isomorphism (a bijection which preserves the group action)

G/Stab(x)→ G · x = X

for any x ∈ X. Hence, we can also view a transitive action as acting on the set G/Stab(x). As Stab(x) ≤ G, this

coincides with the third example in Example 4.18. Thus:

! Keypoint

A transitive action of a group G is equivalent to an action of G on a set of cosets G/H for some H ≤ G.

Therefore, studying the action of G on G/H is natural and is often a useful tool.
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4.4 Primitivity ⋆

We now classify transitive actions further into primitive and imprimitive actions.

Motivation

Let us start with an example. Consider G = S4 acting on X = {1, 2, 3, 4}, and σ = (1234). Then the partition

{{1, 3}, {2, 4}}

of X is “preserved” under σ, since

σ · {1, 3} = {2, 4} and σ · {2, 4} = {1, 3}.

This phenomenon plays an important role in the analysis of group actions, so we will formalise the idea below.

In what follows, we shall the extend the action of a group G on X to subsets of X by defining

g ·A := {g · x : x ∈ A}

for each A ⊆ X. The notion used in the motivation is as follows:

Definition 4.23 (Stabilised partition)

Let G act on X, and let π be a partition of X, i.e. a collection of disjoint subsets of X such that the union is
X. We say that π is stabilised by G if for any g ∈ G,

A ∈ π =⇒ g ·A ∈ π.

It suffices to check the condition on a set of generators for G.

Example 4.24 (Examples of stabilised partitions)

• By above, the subgroup G = ⟨(1234)⟩ of S4 stabilises the partition {{1, 3}, {2, 4}} of {1, 2, 3, 4}.

• Identify X = {1, 2, 3, 4} as the set of vertices of the square, and let D4 acts in the usual way:

1

2

3

4

id 2

3

4

1

r 1

4

3

2

s

i.e. with r = (1234) and s = (24), then D4 stabilises the partition {{1, 3}, {2, 4}} of X again (geometrically,
this means opposite vertices stay opposite under both r and s).

• Recall that G = GL2(R) act on X = R \ {0} by matrix multiplication, i.e. A · v 7→ Av.

Now consider the partition {ℓv} consisting of lines through origin (without the origin),

ℓv := {λv : λ ̸= 0}.

Then any A ∈ G sends any ℓv to another such line, namely ℓAv. So G stabilises this partition of X.

It is clear that if |X| > 1, the group G always stabilises two different partitions of X:

• The set of singletons: π = {{x} : x ∈ X};

• The whole set: π = {X}.
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This motivates the main definition:

Definition 4.25 (Primitive actions)

Let G act on X. If the only two partitions stabilised by G are

{{x} : x ∈ X} and {X},

then we say the action is primitive. Otherwise, it is imprimitive.

Remark. Some authors also say a subgroup of Sym(X) is primitive if it acts primitively on X.

Note that all examples in Example 4.24 are imprimitive, since there is some non-trivial stabilised partition.

Example 4.26 (Sn is primitive)

For instance, Sn acts primitively on X = {1, . . . , n} (or we can just say Sn is primitive by the remark): Suppose
there is a partition π with more than two sets, and one of the sets has more than one element, say:

π = {{x1, x2, . . .}, {y, . . .}, . . .}

then by setting σ = (x1y),
σ · {x1, x2, . . .} = {y, x2, . . .} ̸∈ π.

So π cannot be stabilised by Sn.

We promised primitive is a stronger condition than transitive; this proposition explains why:

Proposition 4.27

Let G act on X. If the action is primitive, then it is either transitive or trivial (g · x = x).

Proof. Note that the G-orbits form a partition of X, and is stabilised by G, as for any x ∈ X,

g · (G · x) = {g · (h · x) : h ∈ G} = {(gh) · x : h ∈ G} = G · x.

Therefore, if the action is primitive, then the partition into orbits must be one of the trivial ones, i.e. either

• G · x = {x} for all x ∈ X, then g · x = x for all g ∈ G, so the action is trivial; or

• G · x = X for one (hence all) x ∈ X, so the action is transitive.

We introduce a convenient notion:

Proposition 4.28

The group G acts imprimitively if and only if there exists A ⊂ X (proper) with |A| > 1 such that for all g ∈ G,

either g ·A = A or (g ·A) ∩A = ∅. (3)

A subset A satisfying (3) will be called a block.

Proof. If G acts imprimitively then any set A in the partition π stabilised by G works. Conversely, given such an A

we can form a partition {g ·A : g ∈ G} of X, which is stabilised by G.

Caution: Note that the requirement that 1 < |A| < X is not included in the definition of a block.

In other words:

! Keypoint

An action is primitive if and only if there are no non-trivial blocks.
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In this case, there is also a partition of X into blocks, because g ·A is also a block: Let h ∈ G and suppose

((hg) ·A) ∩ (g ·A) ̸= ∅.

For any x ∈ ((hg) ·A) ∩ (g ·A), applying g−1 on the left gives

g−1 · x ∈ ((g−1hg) ·A) ∩A

so by A being a block, this forces (g−1hg) ·A = A, thus (hg) ·A = g ·A, as desired.

The condition g · A = A should ring a bell – it looks exactly like the stabiliser. For this reason, we can extend

our original definition:

Definition 4.29 (Stabiliser of a set)

Let G act on X. The (setwise) stabiliser of A ⊆ X is the set of g ∈ G which fix A, i.e.

StabG(A) := {g ∈ G : g ·A = A} ⊆ G.

Again, one can easily check that this is a subgroup of G.

For the remainder of this section, we shall assume G to be finite, acting transitively on a set X with |X| > 1.

The final results we will look at is a correspondence between primitive actions and the subgroups in G. We define:

Definition 4.30 (Maximal subgroup)

A subgroup H < G is called a maximal subgroup if the only subgroups of G which contain H are H and G.

Again note that H ̸= G from the definition. Equivalently, there is not a chain of subgroups

H < K < G

where both of the inclusions are proper.

Lemma 4.31

Let A be a non-trivial block in X. For any x ∈ A,

Stab(x) < Stab(A) < G.

Proof. We have Stab(x) ⊆ Stab(A) because

g · x = x =⇒ (g ·A) ∩A ̸= ∅ =⇒ g ·A = A.

Now to show Stab(x) ̸= Stab(A), let y ∈ A where y ̸= x. Since G acts transitively on X, there is a g ∈ G such

that g · x = y. Then g ∈ Stab(A) (as y ∈ (g ·A) ∩A) but g ̸∈ Stab(x).

Finally, Stab(A) ̸= G since for any y ̸∈ A there exists g ∈ G such that g · x = y, so g ̸∈ Stab(A).

This proves one direction of the following:

Theorem 4.32

The group G acts primitively on X if and only if there exists x ∈ X such that Stab(x) is maximal in G.

Proof. (⇐) is by Proposition 4.28 and Lemma 4.31. For (⇒), suppose there exists x ∈ X and a subgroup H with

Stab(x) < H < G.

Then we claim that A = H · x is a non-trivial block. From H ̸= Stab(x) we have H · x ̸= {x}, so {x} ⊂ A ⊂ X.

If g ∈ H then g ·A = A. Otherwise (g ·A)∩A = ∅: if (gh) ·x = h′ ·x for some h′ ∈ H, then h′−1gh ∈ Stab(x) ⊂ H,

say h′−1gh = h′′, and g = h′h′′h−1 ∈ H, contradiction. Hence A is a block.
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Remark. Similar to transitive actions, if the condition in Theorem 4.32 is true for some x ∈ X, then it is also true

for all x ∈ X, because Stab(x) and Stab(y) are conjugate for any x, y ∈ X (Lemma 4.9).

Combining with the fact that a transitive action is just an action on G/H for some H ≤ G, we can conclude:

Corollary 4.33

The group G acts primitively on X if and only if X is in G-isomorphism to G/H where H ≤ G is maximal.

One can easily check that the action of G on G/H in this case is indeed primitive, establishing (⇐).

Motivation

Final words: It is natural to wonder why we care about this miraculous notion at all. It turns out that primi-
tivity is an analogue to simple groups (Definition 2.6), and thus are again building blocks to any group actions:

Recall that a group G is simple if its only normal subgroups are {eG} and G. Now given any group G and
N ⊴G, we can form a partition of G, namely the set of cosets G/N :

N gN · · ·

G

Therefore, a (finite) group G is simple if and only if the only partitions of G into cosets of any normal subgroup
N are {N} (when G/N ∼= {e}), or {gN : g ∈ G} with |N | = 1 (when G/N ∼= G), i.e.

{G} or {{g} : g ∈ G}.

As we can see, primitivity just extends this idea to general sets.

4.5 Sylow Theorems ⋆

The final part of group actions we will look at are the famous Sylow theorems, which tell you rich information

about subgroups of any finite group.

Definition 4.34 (Sylow subgroups)

Let G be a group and let p be a prime dividing |G|. A subgroup of G is called a Sylow p-subgroup of G if its
order is the highest power of p dividing |G|.

In other words, H is a Sylow p-subgroup if it is a p-group and [G : H] = |G|/|H| is coprime to p. The Sylow

theorems tell you three things:

• There exists Sylow p-subgroups of all primes p | |G|;

• The Sylow p-subgroups for a fixed p are conjugate; and

• Every p-subgroup of G is contained in such a subgroup.

Moreover, the theorems restrict the possible number of Sylow p-subgroups of G.

Remark. In this section, all groups are finite.
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Before we go into the Sylow theorems, we will frequently use the following fact:

Lemma 4.35

Let G be a p-group acting on a finite set X, and XG be the elements x ∈ X such that G · x = {x}. Then

|X| ≡ |XG| (mod p).

Proof. By orbit-stabiliser, for any x ∈ X, we have

|G · x| = [G : Stab(x)] = |G|/|Stab(x)|.

As |G| is a power of p, so is |G · x|, thus G · x is either a singleton (x ∈ XG) or |G · x| is divisible by p. Writing X as

the disjoint union of orbits give the result.

Remark. In the special case of a p-group G acting on itself by conjugation, this translates to |G| ≡ |Z(G)| (mod p),

which implies Theorem 4.15.

Theorem 4.36 (Sylow I)

Let G be a (finite) group, and let p be a prime. If pr | |G|, then G has a subgroup of order pr.

Proof. By Corollary 4.16, it suffices to show that there exists a Sylow p-subgroup. Let |G| = prm with p ∤ m, and

X = {A ⊆ G : |A| = pr},

with the action of G defined by g ·A 7→ gA := {ga : a ∈ A}.

Now for some A ∈ X, consider H := Stab(A) = {g ∈ G : gA = A}. By orbit-stabiliser,

prm = |G| = [G : H] · |H| = |G|
|Stab(A)|

|H| = |G ·A| · |H|.

So if we can find A such that p ∤ |G ·A|, then we can conclude that |H| = pr. Indeed,

|X| =
(
prm

pr

)
=

(prm)(prm− 1) · · · (prm− i) · · · (prm− pr + 1)

pr(pr − 1) · · · (pr − i) · · · (pr − pr + 1)
.

Note that for any i < pr, the power of p dividing prm − i is the power of p dividing i. The same is true for pr − i,

therefore the corresponding terms on top and bottom are divisible by the same powers of p, so p ∤ |X|.

As the orbits form a partition of X, |X| =
∑
|G ·Ai| and thus at least one of the |G ·Ai| is not divisible by p.

Example 4.37 (Example of Sylow p-subgroup)

Consider G = GLn(Fp). The elements in G are precisely those whose columns form a basis for Fn
p . Thus, the

first column can be any nonzero vector, of which there are pn − 1; the second column can be any vector not in
the span of the first column, of which there are pn − p; and so on. Therefore,

|G| = (pn − 1)(pn − p)(pn − p2) · · · (pn − pn−1),

and so the largest power of p dividing |G| is p1+2+...+(n−1). Now the upper triangular matrices of the form
1 ∗ · · · ∗
0 1 · · · ∗
...

...
. . .

...
0 0 · · · 1


form a subgroup U of order pn−1pn−2 · · · p, which is therefore a Sylow p-subgroup of G.
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Remark. The theorem can be seen as a massive generalisation of Cauchy’s theorem (Theorem 4.12). If a prime p

divides |G|, then G has a subgroup H of order p, and any h ̸= eG ∈ H will be an element of G of order p.

We now move on to the second theorem of Sylow, which tells you information on the Sylow p-subgroups. To do

so, we need a new definition:

Definition 4.38 (Normaliser)

Let H be a subgroup of G. The normaliser of H in G is

NG(H) = {g ∈ G : gH = Hg}.

Equivalently, NG(H) is the stabiliser of H under the conjugation action of G.

By Lemma 2.3(iii), H is normal in G iff NG(H) = G. Moreover, one can see that NG(H) is the largest subgroup

of G containing H as a normal subgroup.

Lemma 4.39

Let P be a Sylow p-subgroup of G, and let H be a p-subgroup. If H normalises P , i.e. if H ⊆ NG(P ), then
H ⊆ P . In particular, no Sylow p-subgroup of G other than P normalises P .

Proof. Since H and P are subgroups of NG(P ) with P ⊴NG(P ), we may apply second isomorphism theorem and

H/H ∩ P ∼= HP/P.

Therefore [HP : P ] is a power of p (as H is a p-group), but

|HP | = [HP : P ] · |P |

and |P | is the largest power of p dividing |G|, hence also |HP |. Thus [HP : P ] = p0 = 1, i.e. H ⊆ P .

We are now ready to state and prove the second Sylow theorem:

Theorem 4.40 (Sylow II)

Let G be a (finite) group, and let |G| = prm with p ∤ m. Then:

(a) Any two Sylow p-subgroups are conjugate.

(b) Let sp be the number of Sylow p-subgroups in G; then sp ≡ 1 (mod p) and sp | m.

(c) Every p-subgroup of G is contained in a Sylow p-subgroup.

Proof. (a) Let X be the set of Sylow p-subgroups in G, and let G act on X by conjugation, i.e.

G×X → X, g · P := gPg−1.

We shall show that this action is transitive, i.e. some G-orbit O is all of X.

Let P ∈ O, and let P act on O through the action of G. This single G-orbit may break up into several P -orbits,

one of which will be {P}. In fact this is the only one-point orbit, because

{Q} is a P -orbit ⇐⇒ P ⊆ NG(Q)

which we know (from the lemma above) happens only for Q = P . Again by orbit-stabiliser, the number of

elements in every P -orbit other than {P} would then be divisible by p, and so |O| ≡ 1 (mod p).

Now if there exists P ̸= O, then we again let P act on O, but this time the same argument shows that there

are no one-point orbit, so p | |O|, which contradicts what we proved in the last paragraph. So X = O.
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(b) Since sp = |X| = |O|, we have shown that sp ≡ 1 (mod p).

Let P be a Sylow p-subgroup of G (so O = G · P by (a)). By orbit-stabiliser,

sp = |G · P | = [G : NG(P )] =
|G|

|NG(P )|
=

|G|
[NG(P ) : P ] · |P |

=
m

[NG(P ) : P ]

which implies sp | m.

(c) Let H be a p-subgroup of H, and let H act on the set X of Sylow p-subgroups by conjugation. As p ∤ sp = |X|,
XH must be nonempty (Lemma 4.35), i.e. at least one H-orbit consists of a single Sylow p-subgroup, one of

which is {P}. But then H normalises P and the lemma above implies that H ⊆ P .

Example 4.41 (Sylow subgroups of S4)

Consider G = S4, with order 24 = 23 · 3. There is a nice geometric visualisation of the Sylow subgroups by
considering the action of S4 on a tetrahedron:

1

2 3

4

1

2 3

4

• The Sylow 3-subgroups are the stabilisers of faces, generated by rotations as shown on the left, i.e.

⟨(123)⟩, ⟨(124)⟩, ⟨(134)⟩, and ⟨(234)⟩.

They are conjugate because S4 evidently acts transitively on the faces, and we see that there are indeed
4 ≡ 1 (mod 3) Sylow 3-subgroups as there are 4 faces.

• The Sylow 2-subgroups are the stabilisers of pairs of opposite edges; for instance, the pair shown on the
right has stabiliser

{id, (14), (23), (12)(34), (13)(24), (14)(23), (1342), (1243)}.

Again they are conjugate because S4 acts transitively on the set of pairs of disjoint edges, and there are
3 ≡ 1 (mod 2) Sylow 2-subgroups as there are 3 such pairs.

Sylow theorems are extremely useful for classifying groups with only a few prime factors. We will see this in

action after we develop more theory (see Section 6).
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5 Normal Series

6 Extensions
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