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Note. Following Ravi Vakil’s style, we use ⋆ to denote topics worth knowing on a second (but not first) reading.

1 System of Linear Equations

In this section, we will be focusing on how to solve linear equations.

Warning: In retrospect...

Throughout studying linear algebra it would often seem like it is a study of matrices or computations for solutions

of linear equations. But this is missing the main part of linear algebra, which is actually the study of linear maps.

Everything should be stemmed from the concept of linear maps, and things would be much more meaningful than

just an array of numbers. Hence:

! Keypoint

Treating this as a prerequisite towards linear algebra is fine, but putting this section as the first doesn’t necessarily
imply that it is important.

1.1 Definitions and Notations

By a system of linear equations we mean a family of equations in the form

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm

Here, there are m equations with n unknowns, and we might represent this in matrix form:

Definition 1.1

Given a system of m linear equations in n unknowns, the matrix form is

Ax = B,

where x = (x1, x2, . . . , xn)
T and B = (b1, b2, . . . , bn)

T are column matrices, and

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

. . .
...

am1 am2 · · · amn


is an m× n matrix. The augmented matrix is then defined as

a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

. . .
...

...

am1 am2 · · · amn bm


which is another way to represent the system.

Remark. A reasonable question is what class of sets are the coefficients and the unknowns in. For now, we might

safely assume it to be R, but any field F would work.

Matrix algebra is skipped here and is assumed to be familiar by the reader.
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1.2 Row operations

To solve a system of linear equations, there are three operations we can do:

• multiply an equation by a non-zero factor;

• add a multiple of one equation to another;

• swap two equations.

These three operations are captured by the so-called row operations in an augmented matrix.

Definition 1.2 (Elementary row operations)

We define an elementary row operation to be one of the following operations performed on an augmented
matrix:

• multiply a row by a non-zero factor;

• add a multiple of a row to another;

• swap two rows.

As augmented matrices represent the original system and each row corresponds to one equation, it is natural that

these three operations preserve the solutions of a linear system. We also note here that each row operation has an

inverse row operation. Thus it makes sense to define:

Definition 1.3

Two systems of linear equations are equivalent if either

• they both have no solution (so they are inconsistent);

• or the augmented matrix of the second system can be obtained via row operations from the first.

Equivalently, two systems are equivalent if they have the same set of solutions.

The process in solving system of equations using row operations comes from the following motivation:

Motivation

Intuitively, our goal is to perform row operations so that the matrix is transformed into the form
a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

. . .
...

...

am1 am2 · · · amn bm

 row operations−−−−−−−−−−−−→


1 0 · · · 0 c1

0 1 · · · 0 c2
...

. . .
...

...

0 0 · · · 1 cm


so that we can just “read off” the solution as

x = (c1, c2, . . . , cm)T ,

since the two matrices must have the same set of solutions as they are equivalent.

Unfortunately, this is clearly impossible if m ̸= n, but turns out this is also not always possible (more details

later) even if m = n. In any case, row operations can still be performed so that the goal is somehow reached.

We will first look at an example where the goal can be reached:
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Example 1.4

Consider the system of equations

3x− 2y + z = −6
4x+ 6y − 3z = 5

−4x+ 4y = 12

represented by the augmented matrix  3 −2 1 −6
4 6 −3 5

−4 4 0 12


By performing row operations, 3 −2 1 −6

4 6 −3 5

−4 4 0 12

 R3 7→− 1
4R3−−−−−−−−→

3 −2 1 −6
4 6 −3 5

1 −1 0 −3


R2 7→R2−4R3
R1 7→R1−3R3−−−−−−−−−−→

0 1 1 3

0 10 −3 17

1 −1 0 −3


R2 7→R2−10R1−−−−−−−−−−→

0 1 1 3

0 0 −13 −13
1 −1 0 −3


R2 7→− 1

13R2−−−−−−−−−→

0 1 1 3

0 0 1 1

1 −1 0 −3


R1 7→R1−R2−−−−−−−−−→

0 1 0 2

0 0 1 1

1 −1 0 −3


R3 7→R3+R1−−−−−−−−−→

0 1 0 2

0 0 1 1

1 0 0 −1


R3 7→R1
R1 7→R2
R2 7→R3−−−−−−→

1 0 0 −1
0 1 0 2

0 0 1 1


So the solution is (x, y, z) = (−1, 2, 1).

However, in some cases it is impossible for the augmented matrix to be transformed into such a form:

Example 1.5

If a system is reduced to (
0 1 0 2

0 0 1 5

)
then x has no constraints and its solution set corresponds to (x, y, z) = (λ, 2, 5) where λ ∈ R is arbitrary.

The key idea here is that even though the matrix is not in the form of the goal mentioned before, it is still easy

to figure out the solution in such a form. This gives the following definition.
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Definition 1.6

We say a matrix is in echelon form if it satisfies the following:

• all of the zero rows are at the bottom;

• the first non-zero entry in each row is 1;

• the first non-zero entry in row i is strictly to the left of the first non-zero entry in row i+ 1.

We say a matrix is in row reduced echelon form if it is in echelon form and

• if the first non-zero entry in row i appears in column j, then every other elements in column j is zero.

For example, 
1 1 2 2

0 1 7 12

0 0 1 −10
0 0 0 0



1 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


echelon form row reduced echelon form

Caution: Notice that in row reduced echelon form, the column of B has to satisfy the new condition too.

Clearly row reduced echelon form is the “best possible” goal that we can reach via row operations. But it is often

simple enough to figure out the solution from an echelon form, so that less row operations have to be performed.

1.3 More matrices

We cover some more definitions on matrices here.

Definition 1.7

We say a matrix is square if its number of rows is equal to its number of columns.

A square matrix A = (aij)n×n is said to be

• upper triangular if aij = 0 whenever i > j (all zeros below the diagonal).

• lower triangular if aij = 0 whenever i < j (all zeros above the diagonal).

• diagonal if aij = 0 whenever i ̸= j.

For example, 1 1 2

0 1 7

0 0 1


1 0 0

2 0 0

0 0 0


1 0 0

0 −2 0

0 0 0


upper triangular lower triangular diagonal

Definition 1.8

The n × n identity matrix, denoted by In, is a matrix with all diagonal entries as 1 and all other entries as
0. It is the multiplicative identity for all n× n matrices A, i.e.

InA = AIn = A.

If for square matrix A, there exists a matrix B such that AB = BA = I, then we say A is invertible and B is
an inverse of A. If A is not invertible, we might sometimes call it a singular matrix too.
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Example 1.9

Consider A =

(
2 0

1 −1

)
. Then B =

(
1
2 0
1
2 −1

)
is an inverse of A. Indeed, one could check that

(
2 0

1 −1

)(
1
2 0
1
2 −1

)
=

(
1
2 0
1
2 −1

)(
2 0

1 −1

)
=

(
1 0

0 1

)

An important theorem is as follows.

Theorem 1.10 (Inverse is unique)

If there exists square matrices A,B,C such that AB = CA = I, then B = C.

Proof. We have

B = IB = (CA)B = C(AB) = CI = C

since matrix multiplication is associative.

Hence, if A is invertible, we can talk about the inverse of A, denoted by A−1.

Example 1.11

Suppose A,B are both invertible square matrices. Then AB is also invertible with inverse B−1A−1 since

AB ·B−1A−1 = AIA−1 = I.

It can be shown that if AB = I then we also have BA = I. A standard argument uses determinants: we have

det(A) det(B) = 1 and so B is also invertible. Hence

I = BB−1 = B(AB)B−1 = (BA)BB−1 = BA.

Definition 1.12 (Transpose)

If A = (aij)m×n, then the transpose of A is AT = (aji)n×m.

We have shown that (AB)−1 = B−1A−1 for square matrices A and B. Similarly, one could show the following:

Example 1.13

Suppose A,B are arbitrary matrices. Then (AB)T = BTAT since

• they have the same order p× n;

• the ijth entry of AB is
∑

aikbkj , which is the jith entry of (AB)T ;

• the jith entry of BTAT is
∑

(bT )jk(a
T )ki =

∑
aikbkj .

Transposing and taking inverse are also commutative:

Theorem 1.14

If A is an invertible square matrix, then (AT )−1 = (A−1)T .

Proof. From the definition of inverse,

I = AA−1 =⇒ I = IT = (AA−1)T = (A−1)TAT

and similarly AT (A−1)T = I. Hence (A−1)T is the inverse of AT , as needed.
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1.4 Elementary matrices

After an interlude of more matrices, we can go back to row operations. Indeed, row operations can also be

described using matrix multiplications via the use of elementary matrices.

Definition 1.15 (Elementary matrices)

An elementary matrix is a matrix that can be obtained from an identity matrix by means of one elementary
row operation. They are denoted by

• Er(α): multiplying the row r by α;

• Ers(α): adding a multiple of row s by a factor of α to row r.

• Ers: swapping row r and s.

At the end, we will be able to use elementary matrices to compute the inverse of a matrix. The main two tools

we will use are as follows:

Proposition 1.16

Let A be an m×n matrix and E be an elementary m×m matrix. Then EA is the matrix resulted in applying
the row operation corresponding to E applied on A.

Proof. The cases of Er(α) and Ers are trivial. For Ers(α), we can write

Ers(α)A = (Im + αZrs)A = A+ αZrsA

where Zrs is the matrix with all entries zero except the term in row r, column s being one. Then it is clear that ZrsA

is the matrix with all entries zero except row r being the s-th row of A, so A+ αZrsA is exactly the row operation

of adding a multiple of row s by a factor of α to A.

Proposition 1.17

Every elementary matrix is invertible and the inverse is also an elementary matrix.

Proof. From the corresponding row operations, one can check that

Er(α)Er(α
−1) = Er(α

−1)Er(α) = I

Ers(α)Ers(−α) = Ers(−α)Ers(α) = I

ErsErs = I

and hence they are invertible.

Combining both tools, we have a result on how to compute inverses:

Theorem 1.18

Suppose a square matrix A can be reduced to an identity matrix via row operations. Then A is invertible and
the inverse of A is found by applying the same row operations to I.

Proof. Let E1, E2, . . . , Er be the elementary matrices corresponding to the row operations applied on A so that it is

reduced to I. By Proposition 1.16,

Er · · ·E2E1A = I.

Hence A = E−1
1 E−1

2 · · ·E−1
r as elementary matrices are invertible, and A−1 = Er · · ·E2E1. Yet this can be

viewed as applying the row operations to the matrix I, which gives our desired result.
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Example 1.19

Consider the matrix

A =

1 0 1

1 2 0

3 0 4


We now know that to find its inverse, we can reduce it into I and apply the same row operations to I. We can
do both things at once by constructing the augmented matrix A|I:1 0 1 1 0 0

1 2 0 0 1 0

3 0 4 0 0 1


Then by applying row operations,1 0 1 1 0 0

1 2 0 0 1 0

3 0 4 0 0 1

 R2 7→R2−R1
R3 7→R3−3R1−−−−−−−−−−→

1 0 1 1 0 0

0 2 −1 −1 1 0

0 0 1 −3 0 1


R2 7→R2+R3−−−−−−−−−→

1 0 1 1 0 0

0 2 0 −4 1 1

0 0 1 −3 0 1


R1 7→R1−R3

R2 7→ 1
2R2−−−−−−−−−→

1 0 0 4 0 −1
0 1 0 −2 1

2
1
2

0 0 1 −3 0 1


and hence the inverse of A is

A−1 =

 4 0 −1
−2 1

2
1
2

−3 0 1



1.5 Fields

As promised before, entries in matrices or coefficients in systems of linear equations are not limited to being in

R; in fact, all of our discussion above would have worked if we replace R by an arbitrary field.

Definition 1.20 (Field)

A field is a set F with two binary operations, addition + and multiplication ·, such that

• (F,+) is an abelian group with identity 0;

• (F×, ·) (the set of non-zero elements) is an abelian group with identity 1;

• a · (b+ c) = a · b+ a · c for all a, b, c ∈ F (distributive).

Example 1.21

Here are some classic examples (and non-examples) of fields:

• R,C,Q are all fields.

• If p is a prime, then Fp = {0, 1, . . . , p− 1} is a field with addition and multiplication modulo p.

• F6 as defined above is not a field, since 3 does not have an multiplicative inverse.
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2 Vector Spaces

We now enter the regime of the most important concept in linear algebra: vector spaces. This set up the stage

of all of our proceeding discussion.

2.1 Definitions and Examples

We already know intuitively that Rn is a “vector space”:

Motivation

In Rn, elements are represented by vectors v = (v1, v2, . . . , vn) where vi ∈ R for 1 ≤ i ≤ n.

There are two crucial facts here:

• you can add and subtract two vectors, and there is an additive identity (zero vector) in Rn;

• you can scale a vector by a real number and it will still be in Rn.

This defines what’s called a vector space, but Rn is just the canonical example: the elements are just lists of
numbers.

Here comes the first definition which allows us to jump from viewing things as a list of numbers to abstract

objects in a set:

Definition 2.1 (Vector space)

Let F be a field. A vector space over F is a non-empty set V together with the following maps:

⊕ : V × V → V (addition)

(v1,v2) 7→ v1 ⊕ v2

⊙ : F × V → V (scalar multiplication)

(f,v) 7→ f ⊙ v

satisfying the following axioms: for all f, g ∈ F and v,w ∈ V ,

• (V,⊕) is an abelian group with identity 0V , the zero vector;

• scalar multiplication is distributive: f ⊙ (v⊕w) = (f ⊙v)⊕ (f ⊙w) and (f + g)⊙v = (f ⊙v)⊕ (g⊙v);

• scalar multiplication is associative: f ⊙ (g ⊙ v) = (fg)⊙ v;

• 1⊙ v = v where 1 is the identity element in F .

Then elements in V are called vectors, elements in F are called scalars, and we will sometimes refer to V as
an F -vector space.

Caution: Notice that ⊕ and ⊙ in V is different from the operations in F . However, we will still drop the notation

from now on and simply use + and ·.

Put aside all the abstract definitions, informally, this should be remembered as:

! Keypoint

An F -vector space is a structure where you can add two elements and scale by elements of F , subject to some
constraints which make it well-behaved.

As said before, Rn is an R-vector space. But many other vector spaces exist, and of course they can be more

exotic and quite different from “a list of numbers”:
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Example 2.2 (Some R-vector spaces)
Let’s look at some of the easier examples of R-vector spaces first:

• The set Mm×n(R) of all m× n matrices is a vector space: we can add two matrices and scale a matrix by
a real number.

• The set of all polynomials of degree at most two, namely

{ax2 + bx+ c : a, b, c ∈ R}

is a vector space: we can add two quadratics and multiply by constants.

• In fact, the set of all polynomials with real coefficients, denoted by R[x], is also an R-vector space.

Note that in some of the examples above, we cannot multiply two elements in the vector space (for example,

the product of two quadratics is not a quadratic). But that doesn’t matter – in a vector space we do not need

multiplication of two vectors.

Example 2.3 (Some stranger examples)

Some of the vector spaces can be more exotic:

• The set
Q[
√
2] = {a+ b

√
2 : a, b ∈ Q}

is a Q-vector space. Notice how it is not an R-vector space.

• The set of all real valued functions RX on X, namely

RX := {f : X → R}

is an R-vector space: addition is given by (f + g)(x) := f(x) + g(x) and scalar multiplication is given by
(λf)(x) := λf(x). Notice how the operations on the left side differs in meaning from the right side.

• Similarly, let [a, b] be a closed interval, then the set

C([a, b],R) := {f ∈ R[a,b] : f is continuous}

is an R-vector space too by the operations above, since continuity is preserved.

Caution: The first example illustrates how the base field is very important. Indeed, a change of base field could

result in the set turning into a non-vector space.

2.2 Subspaces

In mathematics, whenever we define “something”, we would also like to define a “sub-something”. In the case of

vector spaces, this is a subspace.

Definition 2.4 (Subspace)

A subset W of a vector space V is a subspace of V , denoted by W ≤ V , if

• W is non-empty;

• for v,w ∈W , v +w is also in W (closed under addition);

• for v ∈W and f ∈ R, fv is also in W (closed under scalar multiplication).

Remark. Note that V and the zero subspace are always subspaces of V . Any other subspace of V would hence be

called a proper subspace of V .

11
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Proposition 2.5

Every subspace of a F -vector space V must contain the zero vector.

Proof. We first show that 0v = 0V in any vector space V . Indeed, we have 0v + 0v = (0 + 0)v = 0v, so 0v is the

additive identity in V , which is precisely the zero vector 0V .

Now let U be a subspace of V . Since U is non-empty, we can pick v ∈ U . Then 0V = 0v ∈ U since U is closed

under scalar multiplication.

An important fact below gives an equivalent definition of a subspace (which we will not prove):

! Keypoint

A subspace of a F -vector space V is itself a F -vector space, inheriting the operations from V .

If we have two subspaces U and W , there are several things we can do with them. For example, we can take the

intersection U ∩W . We will show that this will be a subspace:

Theorem 2.6

Let U,W be subspaces of V . Then U ∩W is a subspace of V .

Proof. It suffices to check:

• U ∩W is non-empty since 0V ∈ U and W ;

• if v1,v2 ∈ U ∩W , then v1 + v2 ∈ U and W as addition is closed in U and W . Hence v1 + v2 ∈ U ∩W ;

• similarly scalar multiplication is closed.

Thus by definition, U ∩W is a subspace of V .

However, taking the union will in general not produce a vector space. For instance, consider

U = {(x, 0) : x ∈ R} and W = {(0, y) : y ∈ R}

where V = R2. Then (1, 0) and (0, 1) are in U ∪W , yet (1, 0) + (0, 1) = (1, 1) ̸∈ U ∪W .

2.3 Spans, Linear independence, and Bases

Recall that in Rn, the “standard bases” made of the form ei = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the i-th component

represent all vectors in a linear combination. This section generalises the idea for general vector spaces.

Motivation

As a first motivation, consider
V = {ax2 + bx+ c : a, b, c ∈ R}

as above. Then every element can be represented as a sum of copies of {1, x, x2}. It is not the only one:
{2, x, x2}, {x + 4, x − 2, x2 + x} work just as fine, though not as natural. But S = {3 + x2, x + 1, 5 + 2x + x2}
should not be considered a basis for two reasons:

• it is impossible to write x2 as a sum of elements of S;

• the representation is not unique: we have 0 = (3 + x2) + 2(x + 1) − (5 + 2x + x2) so we can just add
whatever multiple of this expression to the linear combination.

This motivates the definition of spanning and linearly independent, as we will see later.
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The most important result in this section is to prove that for any vector space, any two basis must contain

the same number of elements. This means we can define the dimension of a vector space as the number of

elements in a basis. We will also prove that the dimension is well-behaved. For example, a subspace of a vector space

must have a smaller dimension than the larger space.

Remark. For experts: this is not true for modules over a ring R. Indeed, not all modules have a basis, and even

for those that have a basis, the behaviour of the “dimension” is vastly different.

Definition 2.7 (Span)

Given an F -vector space V , a linear combination of some vectors v1,v2, . . . ,vn is a sum of the form α1v1 +
· · ·+ αnvn, where α1, . . . , αn ∈ F .

The span of v1,v2, . . . ,vn is then the set of linear combinations of v1,v2, . . . ,vn, i.e.

Span(v1,v2, . . . ,vn) = {α1v1 + · · ·+ αnvn ∈ V : α1, . . . , αn ∈ F}.

Note in particular that, by convention, we take the empty sum to be 0V , so Span ∅ = {0V }. In addition, for an

infinite set S, we still only take finite sums, i.e.

Span(S) =

{ ∑
vi∈S′

αivi : S
′ finite
⊂ S, αi ∈ F

}
,

as infinite sums and the notion of convergence do not make sense in a general vector space.

Lemma 2.8

Let V be an F -vector space, and v1,v2, . . . ,vn ∈ V . Then Span(v1,v2, . . . ,vn) is a subspace of V .

Proof. Clearly S := Span(v1,v2, . . . ,vn) ⊂ V , so it suffices to check:

• S is non-empty since v1 ∈ S;

• if u,w ∈ S then u =
∑

αivi and w =
∑

βivi for some αi and βi. Hence

u+w =

n∑
i=1

(αi + βi)vi ∈ S

as F is closed under addition;

• similarly, if u ∈ S and λ ∈ F , then u =
∑

αivi and so λu =
∑n

i=1(λαi)vi ∈ S.

Example 2.9

Let V = R3 and S =


1
0
0

 ,

0
1
1

 ,

1
2
2

. Then Span(S) =


a
b
b

 : a, b ∈ R

.

Note that any subset of S with two elements has the same span as S.

Definition 2.10 (Spanning set)

Let V be an F -vector space, and suppose S ⊂ V satisfies Span(S) = V . Then we say S spans V or equivalently
S is a spanning set for V .

Again, spanning sets are not unique for if Span(S) = V and v ∈ Span(S), then Span(S ∪ {v}) = Span(S) = V ,

in the sense that adding v brings no contribution since the rest of the elements are “enough”.

13
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To avoid redundancy, we introduce a new concept:

Definition 2.11 (Linear independence)

Let V be an F -vector space. We say v1,v2, . . . ,vn ∈ V are linearly independent if whenever

n∑
i=1

αivi = 0V

we must have αi = 0 for all i. A set is linearly dependent if it is not linearly independent.

Example 2.12

Using the above example,


1
0
0

 ,

0
1
1

 is a linearly independent subset of R3, but S =


1
0
0

 ,

0
1
1

 ,

1
2
2


is linearly dependent since

1

1
0
0

+ 2

0
1
1

+ (−1)

1
2
2

 = 0V .

In addition, S does not span V since

0
0
1

 ̸∈ Span(S).

Before moving on to bases, we have a property for linearly independent sets which are useful later on.

Lemma 2.13

Let v1,v2, . . . ,vn be linearly independent in an F -vector space V , and let vn+1 be a vector such that vn+1 ̸∈
Span(v1,v2, . . . ,vn). Then v1,v2, . . . ,vn,vn+1 is linearly independent.

Proof. Suppose α1v1 + · · ·+ αn+1vn+1 = 0V for some αi ∈ F . If αn+1 ̸= 0, then

vn+1 = − 1

αn+1

n∑
i=1

αivi ∈ Span(v1,v2, . . . ,vn),

which is a contradiction.

Hence αn+1 = 0 and so α1v1+· · ·+αnvn = 0V . But v1, . . . ,vn are linearly independent, so α1 = · · · = αn = 0.

After studying spans and linear independence, we can finally state what a basis is.

Definition 2.14 (Basis)

Let V be an F -vector space. A basis of V is a linearly independent spanning set of V .

If V has a finite basis, then we say V is a finite dimensional vector space.

Recall from the motivation that {1, x, x2} is indeed a basis for V = {ax2 + bx+ c : a, b, c ∈ R}, and one can now

verify it easily. Here are more examples:

Example 2.15

• Regard Q[
√
2] = {a+ b

√
2 : a, b ∈ Q} as a Q-vector space. Then {1,

√
2} is a basis.

• If V = R[x], the set of all real polynomials, then there is an infinite basis {1, x, x2, . . .}. The condition that
we only use finitely many terms guarantees that the polynomials must have finite degree (which is good).
Note in particular that V is not finite dimensional.

14
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Besides this definition, we also have an equivalent definition of a basis:

Proposition 2.16

Let V be an F -vector space, and S = {v1,v2, . . . ,vn} ⊆ V . Then S is a basis of V if and only if every vector
in V can be uniquely expressed as a linear combination of elements in S.

Proof. (⇒) Suppose S is a basis of V . Take v ∈ V . Since V is spanned by S there exists α1, . . . , αn ∈ F such that

v =
∑

αivi. Now suppose there exists β1, . . . , βn ∈ F such that v =
∑

βivi. Then

v =

n∑
i=1

αivi =

n∑
i=1

βivi =⇒
n∑

i=1

(αi − βi)vi = 0,

which implies αi = βi as S is linearly independent. Thus the choice of αi’s is unique.

(⇐) Suppose conversely that for every v ∈ V there are unique αi such that v =
∑

αivi. Then it suffices to check:

• S is spanning: let v ∈ V , then v =
∑

αivi ∈ Span(S).

• S is linearly independent: since 0v1 + · · ·+ 0vn = 0V , if
∑

βivi = 0 then by uniqueness we must have βi = 0.

Hence S is a basis for V .

In the above proof, we can see that spanning ensures the existence of a linear combination, and linearly inde-

pendence ensures the uniqueness of the linear combination. So the result is in fact quite natural.

Proposition 2.17

Let V be a non-trivial F -vector space and suppose V has a finite spanning set S. Then S contains a basis.

Proof. Consider T ⊆ S such that T is linearly independent and for any linearly independent subset T ′ of S, we must

have |T ′| ≤ |T |. This is possible since there exists v ∈ S, and {v} is linearly independent.

We claim that T is spanning. Indeed, suppose not then there is a v ∈ S \ Span(T ). But by Lemma 2.13 T ∪ {v}
is linearly independent, contradiction since T ∪ {v} ⊆ S is a larger linearly independent subset.

As a final side-note: having a basis e1, e2, . . . , en of V is really cool because it means that to specify v ∈ V , we

only have to specify α1, . . . , αn ∈ F , and let v =
∑

αiei. We can even think of v as (α1, . . . , αn).

2.4 Dimension

Ideally, we would want to define the dimension as the number of vectors in a basis. However, we must first show

that this is well-defined: it is certainly plausible that a vector space has a basis of size 7 as well as one of size 3.

The key step is as follows:

Lemma 2.18 (Steinitz Exchange Lemma)

Let V be an F -vector space. Take S ⊆ V and suppose u ∈ Span(S) but u ̸∈ Span(S \ {v}) for some v ∈ S.
Then Span(S) = Span((S \ {v}) ∪ {u}).

Proof. Since u ∈ Span(S), there exists α1, . . . , αn ∈ F and v1, . . . ,vn ∈ S such that u =
∑

αivi. Now u ̸∈
Span(S \ {v}) for some v implies that v = vi for some i, so WLOG assume v = vn and αn ̸= 0. Then

v = vn =
1

αn
(u− α1v1 − · · · − αn−1vn−1).

15
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Now if w ∈ Span((S \ {v}) ∪ {u}) then there exists β0, β1, . . . , βm ∈ F and u1, . . . ,um ∈ S \ {v} such that

w = β0u+

m∑
i=1

βiui = β0

n∑
i=1

αivi +

m∑
i=1

βiui ∈ Span(S),

so Span((S \ {v}) ∪ {u}) ⊆ Span(S).

For the other direction, if w ∈ Span(S), w can be written as a linear combination of elements in S. Then we

can replace vn by 1
αn

(u − α1v1 − · · · − αn−1vn−1), so it is a linear combination of elements in (S \ {v}) ∪ {u}, so
Span(S) ⊆ Span((S \ {v}) ∪ {u}), which completes the proof.

Remark. It is called the exchange lemma since it essentially states that we can exchange v for u and still preserve

the span under certain conditions.

We now proceed to the main theorem of this section. It has multiple corollaries, including the fact that dimension

is well-defined. Unfortunately, the proof is going to be slightly technical and notationally daunting, but the idea

should be simple.

Theorem 2.19

Let V be a finite dimensional F -vector space. Let S, T be finite subsets of V . If S is linearly independent and
T spans V then |S| ≤ |T |.

Before the proof, this means

! Keypoint

Linear independent sets are at most as big as spanning sets.

Proof. Let S = {s1, . . . , sm} be linearly independent and T = {t1, . . . , tn} be spanning. Moreover let T0 = T .

Since Span(T0) = V there is a minimal i such that s1 ∈ Span({t1, . . . , ti}). In particular, s1 ̸∈ Span({t1, . . . , ti−1}).
Thus by Steinitz Exchange Lemma (SEL),

Span(s1, t1, . . . , ti−1) = Span(t1, . . . , ti).

Now let T1 = {s1, t1, . . . , ti−1, ti+1, . . . , tn} = T0 \{ti}∪{s1}. Then Span(T1) = Span(T0) = V . We continue this

process inductively: suppose for some j with 1 ≤ j ≤ m we have Tj = {s1, . . . , sj , ti1 , . . . , tin−j
}, with Span(Tj) = V

and tik ∈ T . Then sj+1 ∈ Span(Tj) so there is a minimal k such that sj+1 ∈ Span(s1, . . . , sj , ti1 , . . . , tik).

We let Tj+1 = Tj \ {tik} ∪ {sj+1} and by SEL, Span(Tj+1) = Span(Tj) = V . By relabelling the elements of Tj+1

we have a set of the form

Tj+1 = {s1, . . . , sj+1, ti1 , . . . , tin−(j+1)
},

so the process can be continued.

Now after j steps we have replaced j members of T with j members of S. We cannot run out of members of T

before we run out of members of S, or else Tk = {s1, . . . , sk} for some k but Span(Tk) = V , so sk+1 ∈ Span(Tk),

contradiction to S being linearly independent. Hence m ≤ n.

Behind the notational mess, the main idea in the proof is to replace elements of T one-by-one by elements of S,

and to preserve the spanning property of T , where we used the Steinitz Exchange Lemma.
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We finally have the following result we have promised a long time ago:

Corollary 2.20 (Dimension theorem for vector spaces)

Let V be a finite dimensional vector space, and S, T be bases of V . Then S and T are both finite and |S| = |T |.

Proof. Since V is finite dimensional, it has a finite basis B. Now as S, T are linearly independent, by Theorem 2.19

|S| ≤ |B| and |T | ≤ |B|, so both sets are finite.

Now S is spanning and T is linearly independent, so |T | ≤ |S|. Similarly |S| ≤ |T |, so |S| = |T |.

Remark. In fact, the theorem is true for an infinite basis as well if we interpret “the size of a basis” as “cardinality”.

The dimension theorem, true to its name, allows us to define:

Definition 2.21

Let V be a finite dimensional vector space. The dimension of V , written dimV , is the size of any basis of V .

For example,

V = {ax2 + bx+ c : a, b, c ∈ R}

has dimension three, because {1, x, x2} is a basis. That’s not the only basis: we could as well have written

{a(x2 − 4x) + b(x+ 2) + c : a, b, c ∈ R}

and gotten the exact same vector space. But the beauty of the theorem is that no matter how we try to contrive the

basis, we always will get exactly three elements. That’s why it makes sense to say V has dimension three.

Besides the dimension theorem, we have multiple other corollaries:

Corollary 2.22

Suppose that dimV = n. Then

(i) any spanning set of size n is a basis;

(ii) any linearly independent set of size n is a basis;

(iii) S is spanning if and only if it contains a basis;

(iv) S is linearly independent if and only if it is contained in a basis;

(v) any subset of V with size > n is linearly dependent.

Proof. Most of the proofs are simple routine:

(i). Let T be spanning with size n. If T were linearly dependent, then there is some t0, . . . , tm ∈ T and α1, . . . , αm ∈
F such that t0 =

∑
αiti. Hence Span(T \ {t0}) = Span(T ) = V , but T \ {t0} has size n− 1 < n, contradicting

Theorem 2.19.

(ii). Let T be linearly independent with size n, but Span(T ) ̸= V . Then there exists v ̸∈ Span(T ). By Lemma 2.13,

T ∪ {v} is linearly independent, contradiction.

(iii). (⇒) is proved in Proposition 2.17, and (⇐) is trivial.

(iv). (⇒) is by the proof of Theorem 2.19: pick a basis B of V , then there is some B′ ⊆ B with |B′| = |T | such that

(B \B′) ∪ T spans V , which is a basis by (i). (⇐) is trivial.

(v). Contrapositive of “linear independent ⇒ size ≤ n”.
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2.5 More subspaces

We have shown that U ∩W is a subspace of V while U ∪W in general isn’t. Turns out, we need the sum:

Definition 2.23

Let U,W be subspaces of V . Then the sum of U and V is

U +W = {u+w : u ∈ U,w ∈W},

which is a subspace of V .

It is simple to check that it is indeed a subspace, so we omit it here. Note that U,W ⊆ U +W as for any u ∈ U ,

u = u+ 0 ∈ U +W and similarly for W .

Example 2.24

Take the vector space R2 = {(x, y) : x, y ∈ R}. We can consider it as a sum of its x-axis and y-axis:

X = {(x, 0) : x ∈ R} and Y = {(0, y) : y ∈ R}.

Then R2 = X + Y .

Remark. Extra side-note: for a vector space V , if V = U +W and every element in V can be uniquely written as

u+w for some u ∈ U,w ∈W , then the sum is also called a direct sum, and is denoted V = U ⊕W .

For instance, R2 = X ⊕ Y above and if V = {ax2 + bx + c : a, b, c ∈ R} then we can write V = x2R ⊕ xR ⊕ R.
This gives us a “top-down” way to break down vector spaces.

Proposition 2.25

Let V be an F -vector space and U,W be subspaces of V . Suppose we have U = Span(u1, . . . ,us) and W =
Span(w1, . . . ,wr), then

U +W = Span(u1, . . . ,us,w1, . . . ,wr).

Proof. (⊆) Let v ∈ U +W . Then v = u+w for some u ∈ U and w ∈W . Therefore there exists αi and βi such that

u =

s∑
i=1

αiui and w =

r∑
i=1

βiwi,

so v =
∑

αiui +
∑

βiwi ∈ Span(u1, . . . ,us,w1, . . . ,wr). The case of (⊇) is similar.

The following theorem combines all the definition, and showcases the idea of “choosing the correct basis” well. Also

note that Corollary 2.22(iv) is particularly useful here for extending a basis, which is a trick you should internalise.

Theorem 2.26

Let V be an F -vector space and u,W be subspaces of V . Then

dim(U +W ) = dimU + dimW − dim(U ∩W ).

Proof. Let BU∩W = {v1,v2, . . . ,vm} be a basis of U ∩W . Regarding U as a vector space, U ∩W ⊆ U is a subspace.

Since BU∩W is linearly independent it is contained in a basis

BU = {v1, . . . ,vm,um+1, . . . ,ur},

and similarly we have a basis

BW = {v1, . . . ,vm,wm+1, . . . ,ws}

for W . We want to show that dim(U +W ) = r + s−m, so it suffices to prove that BU ∪BW is a basis for U +W .

18
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• BU ∪BW is spanning: immediate by Proposition 2.25.

• BU ∪BW is linearly independent: suppose we have a linear combination

m∑
i=1

λivi +

r∑
j=m+1

µjuj +

s∑
k=m+1

νkwk = 0V

where λi, µj , νk ∈ F . Then ∑
λivi +

∑
µjuj = −

∑
νkwk.

Since the left hand side is something in U and the right hand side is something in W , they both lie in U ∩W .

Hence we can write the the left hand side as
∑

βivi for some βi ∈ F as it is in Span(BU∩W ). Then∑
βivi +

∑
νkwk = 0V

and since BW = {v1, . . . ,vm,wm+1, . . . ,ws} is a basis for W , we have βi = νi = 0. Therefore∑
λivi +

∑
µjuj = 0V

and since BU = {v1, . . . ,vm,um+1, . . . ,ur} is a basis for U , we have λi = µi = 0.

Thus BU ∪BW is linearly independent.

This completes the proof as |BU ∪BW | = r + s−m.

We end this section by providing a concrete example in computing the basis for U ∩W,U,W and U +W .

Example 2.27

Let V = R3, U = {(x, y, z) ∈ V : x+ y + z = 0} and W = {(x, y, z) ∈ V : −x+ 2y + z = 0}.

• For U ∩W , a vector v = (x, y, z) is in U ∩W if and only if x + y + z = 0 and −x + 2y + z = 0, which
reduces to y = 2x and z = −3x. Hence U ∩W = {(x, 2x,−3x) : x ∈ R} and thus {(1, 2,−3)} is a basis.

• A general vector in U is of the form (a, b,−a−b) for a, b ∈ R, so it is easy to see that {(1, 0,−1), (0, 1,−1)}
is a spanning set. As the two vectors are linearly independent, this is a basis for U .

But now let’s try to exchange one of the vectors in the basis by (1, 2,−3), so our life will be easier in the
case of U +W . Notice that (1, 2,−3) ̸∈ Span(1, 0,−1), so by SEL {(1, 0,−1), (1, 2,−3)} is a basis too.

• Similarly, one can see that {(1, 0, 1), (1, 2,−3)} is a basis for W .

• Finally, for U +W , by Proposition 2.25, {(1, 0,−1), (1, 0, 1), (1, 2,−3)} is spanning. By Theorem 2.26 we
already know dim(U +W ) = 2 + 2− 1 = 3, so by Corollary 2.22(i) this is a basis.

Motivation

Notice that in the above example, if we simply used a non-intersecting basis for U and W , the spanning set
for U +W would have size 4, so we need extra work to remove one of the vectors and show that it is linearly
independent or spanning. This explains why we exchanged the vector in the basis of U .

Remark. As a final side-note: the direct sum that we defined before is actually the notion of internal direct

sums. The seemingly opposite notion, external direct sum is defined as

U ⊕W = {(u,w) : u ∈ U,w ∈W}

where U and W are F -vector spaces. This creates a new vector space (addition and scalar multiplication are defined

componentwise) instead of decomposing the given vector space, thus the name external. But one can show that they

are actually isomorphic, so they deserve the same name and notation.
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2.6 Rank of a matrix

The final subsection is a glimpse at the whole picture of linear transformations that we will soon cover, and

possibly the most important concept in matrix algebra. We will define the (row and column) rank of a matrix,

which represents a measure of “information content” of a matrix.

Motivation

Consider the system of equations

x+ 2y = 0

2x+ 4y = 0

From first sight we know that there are infinitely many solutions: the second equation is just a multiple of the
first, so any point of the form (−2y, y) works. There are multiple ways to think of this:

• The matrix A =

(
1 2
2 4

)
has two linearly dependent rows, so although there are two equations, only one

is useful, or in other words dimSpan(row vectors) = 1.

• If we regard A as a map A : R2 → R2 which sends x to Ax, then the image of the map

imA =

{(
x1 + 2x2

2x1 + 4x2

)
: x1, x2 ∈ R

}
=

{(
x
2x

)
: x ∈ R

}
is a subspace of R2 with dimension one: it is just a line y = 2x in the plane.

These two perspectives both agree to say that the matrix A has (row) rank one. We will later see how this
relates to the system having infinitely many solutions.

Enough talking, here are the definitions:

Definition 2.28

Let A be an m× n matrix with entries in a field F . Define

• the row space of A, denoted by RSp(A) as the span of the rows of A. This is a subspace of Fn;

• the row rank of A to be dim(RSp(A)).

Similarly we can define the column space CSp(A) of A which is a subspace of Fm and the column rank.

Example 2.29

Let F = R and A =

(
3 1 2
0 −1 1

)
. Then

RSp(A) = Span((3, 1, 2), (0,−1, 1)) and CSp(A) = Span

((
3
0

)
,

(
1
−1

)
,

(
2
1

))
.

Now since (3, 1, 2) and (0,−1, 1) are linearly independent, dim(RSp(A)) = 2, while the set

{(
3
0

)
,

(
1
−1

)
,

(
2
1

)}
is linearly dependent since

(
3
0

)
=

(
1
−1

)
+

(
2
1

)
. So

CSp(A) = Span

((
1
−1

)
,

(
2
1

))
and consequently dim(CSp(A)) = 2.
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To find the row rank of a matrix, we can adopt the following steps:

• Reduce A to row echelon form using row operations:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

. . .
...

am1 am2 · · · amn

 row operations−−−−−−−−−−−−→ Aech =


1 ∗ ∗ ∗ · · ·
0 0 1 ∗ · · ·
...

. . .
...

0 0 0 0 · · ·


• The non-zero rows of Aech form a basis for RSp(A) so the row rank is the number of non-zero rows in Aech.

The reason why this works is based on the following lemma:

Lemma 2.30

Define Aech as above, then (i) RSp(A) = RSp(Aech) and (ii) the rows of Aech are linearly independent.

Proof. To show (i), notice that to obtain Aech from A the possible row operations are
Ri 7→ λRi λ ∈ F, i ̸= j

Ri 7→ Ri + λRj λ ∈ F \ {0}
Ri ↔ Rj i ̸= j

Let A′ be obtained from A by one row operation. Then clearly every row of A′ lies in RSp(A), as the row

operations that we perform are linear. Hence RSp(A′) ⊆ RSp(A). Moreover, every row operation is invertible:
Ri 7→ λRi has inverse Ri 7→ 1

λRi

Ri 7→ Ri + λRj has inverse Ri 7→ Ri − λRj

Ri ↔ Rj has inverse Ri ↔ Rj

which are all row operations too. Hence RSp(A) ⊆ RSp(A′) and RSp(A) = RSp(A′). After a finite number of row

operations, we would obtain Aech, thus RSp(A) = RSp(Aech) as desired.

For (ii), let i1, . . . , ik be the positions of the leading entries in each row:

Aech =



i1 i2 ···

1 ∗ ∗ ∗ · · ·
0 0 1 ∗ · · ·
...

. . .
...

0 0 0 0 · · ·


and let r1, . . . , rk denonte the non-zero row vectors of Aech. Now suppose α1r1 + · · ·+ αkrk = 0 for scalars αi.

Then the i1-th entry of
∑

αiri is α1 · 1 = α1 since the entry in all other rows are 0. Hence α1 = 0 and

α1r1 + · · · + αkrk = α2r2 + · · · + αkrk. Similarly, the i2-th entry is α2 so α2 = 0. By induction we can show that

αi = 0 for all i, so the row vectors are linearly independent.

In particular, (i) in the above lemma says that

! Keypoint

Row operations have no effect on the row space.

Remark. Note that the above argument still works if the leading entries in Aech are not 1s.
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A neat application of the above procedure is that we can now compute dimension of a span more easily:

Example 2.31

Consider
W = Span((−1, 1, 0, 1), (2, 3, 1, 0), (0, 1, 2, 3)) ⊆ R4.

We will try to find the dimension of W . Viewing the vectors as rows of a matrix, i.e. let A =

−1 1 0 1
2 3 1 0
0 1 2 3

,

then W is the row space of this matrix and the dimension is the row rank. By row operations,

A
R2 7→R2+2R1−−−−−−−−−−→

−1 1 0 1
0 5 1 2
0 1 2 3

 R3 7→5R3−−−−−−−→

−1 1 0 1
0 5 1 2
0 5 10 15

 R3 7→R3−R2−−−−−−−−−→

−1 1 0 1
0 5 1 2
0 0 9 13

 = Aech

which has three non-zero rows, so dimW = dim(RSp(A)) = 3.

To find the column rank (as well as a basis of the column space) of A, we simply have to find the row rank of

AT , since the columns of A are the rows of AT .

The interesting result is as below:

Theorem 2.32 (Row rank = Column rank)

For any matrix A, the row rank of A is equal to the column rank of A.

Proof. Let A = (aij) ∈ Mm×n(F ), and let the rows of A be r1, . . . , rm, so ri = (ai1, . . . , ain). Similarly let the

columns of A be c1, . . . , cm. Assume A has row rank k.

Then RSp(A) has a basis {v1, . . . ,vk}. Every row would then be a linear combination of v1, . . . ,vk, so

ri = αi1v1 + αi2v2 · · ·+ αikvk

for some αij . Now let vi = (bi1, bi2, . . . , bin). Then by looking at the j-th coordinate in the above linear combination,

aij = αi1b1j + αi2b2j + · · ·+ αikbkj .

Now

cj =


a1j

a2j
...

amj

 =


α11b1j + α12b2j + · · ·+ α1kbkj

α21b1j + α22b2j + · · ·+ α2kbkj
...

αm1b1j + αm2b2j + · · ·+ αmkbkj

 = b1j


α11

α21

...

αm1

+ b2j


α12

α22

...

αm2

+ · · ·+ bkj


α1k

α2k

...

αmk

 ,

i.e. cj is a linear combination of the vectors
α11

α21

...

αm1

 ,


α12

α22

...

αm2

 , . . . ,


α1k

α2k

...

αmk

 .

Hence CSp(A) is spanned by these vectors, thus dim(CSp(A)) ≤ k = dim(RSp(A)). By the same argu-

ment, dim(CSp(AT )) ≤ dim(RSp(AT )), but the column rank of AT is the row rank of A and vice versa. Hence

dim(RSp(A)) = dim(CSp(A)), as needed.
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As we now know that row and column rank are the same, it makes sense to define:

Definition 2.33 (Rank)

Let A be a matrix. The rank of A, written rank(A), is the row rank of A.

This completely explains our first perspective as mentioned in the motivation. For the second perspective, we

will elaborate in a more detailed manner once we introduced linear transformations.

Finally, we have a proposition for the special case when A is a square matrix to end this section.

Proposition 2.34

Let A be an n× n matrix with entries in F . Then the following are equivalent:

(i) rank(A) = n, otherwise known as “A has full rank”.

(ii) the rows of A form a basis for Fn.

(iii) the columns of A form a basis for Fn.

(iv) A is invertible.

Proof. ((i) ⇔ (ii)): We simply note that

rank(A) = n ⇐⇒ dim(RSp(A)) = n ⇐⇒ RSp(A) = Fn

which is equivalent to the desired statement. ((i) ⇔ (iii)) is the same but with columns.

((i) ⇔ (iv)): Notice that rank(A) = n if and only if the row echelon form of A looks like

Aech =


1

1 ∗
1

0
. . .

1


Since all of the ∗ entries can be eliminated using row operations, A is reducible to I by row operations. Thus by

Theorem 1.18 this is equivalent to A being invertible.
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3 Linear Transformations

Here comes possibly the most important concept in linear algebra: linear transformations.

3.1 Definitions

In mathematics, apart from studying objects, we would like to study functions between objects as well. In particu-

lar, we would like to study structure-preserving functions. This motivates the definition of linear transformations:

Definition 3.1 (Linear transformations)

Let V,W be F -vector spaces and T : V →W be a function from V to W . T is a linear transformation if

• T preserves addition: T (v1 + v2) = T (v1) + T (v2) for all v1,v2 ∈ V ;

• T preserves scalar multiplication: T (λv) = λT (v) for all v ∈ V, λ ∈ F .

If this map is a bijection, it is an isomorphism. We then say V and W are isomorphic and write V ∼= W .

The definition is natural as the structures determining whether a set is a vector space are exactly the two which

are preserved. Note particularly that T (0V ) = 0W . Also notice that the two conditions can be combined to the

single requirement that

T (λv1 + µv2) = λT (v1) + µT (v2)

for all v1,v2 ∈ V and λ, µ ∈ F .

Example 3.2

Here are a myriad of examples:

• The identity map id : V → V is clearly a linear transformation and isomorphism.

• The map R3 → R via (x, y, z) 7→ 4x+ 2y + z is a linear transformation.

• If A is an n×m matrix with entries in F , then the map Fm → Fn by v 7→ Av is a linear transformation.

• The map R[x]→ R[x] via differention, i.e. f(x) 7→ f ′(x) is a linear transformation.

• Let V be the set of real polynomials of degree at most 2, i.e. V = {ax2 + bx+ c : a, b, c ∈ R}. Then

– the map R3 → V by (a, b, c) 7→ ax2 + bx+ c is an isomorphism;

– the map V → R by ax2 + bx+ c 7→ 9a+ 3b+ c is a linear transformation, which can be described as
“evaluation at 3”.

• Consider the map of complex conjugation, i.e. T : C→ C via z 7→ z. Then

– if we view C as an R-vector space, T is a linear transformation since λ = λ for all λ ∈ R;
– if we view C as a C-vector space, then T is not a linear transformation.

Caution: Despite the name “linear”, many “linear” functions are not linear transformations. For instance, T : R→ R
defined by x 7→ x+ 1 is not a linear transformation since neither conditions are satisfied.

We also have an equivalent formulation for isomorphisms:

Proposition 3.3

A linear transformation is an isomorphism if and only if it has an linear inverse function.

Proof. (⇐) is simple since a function having an inverse is equivalent to it being bijective.
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(⇒) Suppose T : V → W is a bijective linear transformation, then it has an inverse T−1 : W → V . We want to

show that it is linear. Let w1,w2 ∈W and λ, µ ∈ F . Then

T (T−1(λw1 + µw2)) = λw1 + µw2 = λT (T−1(w1)) + µT (T−1(w2)) = T (λT−1(w1) + µT−1(w2)).

Since T is injective, T−1(λw1 + µw2) = λT−1(w1) + µT−1(w2). So T−1 is linear.

3.2 What is a matrix?

Using linear transformations, one can finally explain matrices in a morally correct manner: it is a way of repre-

senting a linear transformation in terms of bases. At the end we will show that in fact, all linear transformations

come from matrices.

To reach there, we need to establish some basic ideas of what is happening. We will first show:

! Keypoint

To define a linear transformation, it suffices to define its values on a basis.

In addition, a nice corollary we will show later is the following fact:

Motivation

At the end of Section 2.3, we mentioned how given a basis e1, . . . , en, we can just think of a vector v ∈ V as a
list of scalars (α1, . . . , αn) since v =

∑
αiei is a unique representation of v. But notice that the list of scalars

is actually just an element in Fn. So essentially this means:

V ∼= F dimV

for any finite-dimensional vector space V .

So let’s begin. The following example explains the keypoint:

Example 3.4

Consider a linear transformation T : R2 → R3 such that T (1, 0) = (1,−1, 2) and T (0, 1) = (0, 1, 3). Then we
can extend linearly, in the following sense:

Since {(1, 0), (0, 1)} is a basis of R2, if we have (a, b) ∈ R2 we can write (a, b) = a(1, 0) + b(0, 1). Then by the
definition of linear transformations,

T (a, b) = T (a(1, 0) + b(0, 1)) = aT (1, 0) + bT (0, 1) = a(1,−1, 2) + b(0, 1, 3) = (a,−a+ b, 2a+ 3b).

So the whole map is actually determined.

Proposition 3.5

Let V and W be F -vector spaces and {e1, . . . , en} be a basis of V . Suppose we fix some w1, . . . ,wn. Then
there is a unique linear transformation T : V →W such that T (ei) = wi for all i.

Proof. Let v ∈ V . Since e1, . . . , en is a basis, we can write v =
∑

λiei uniquely. Then we define T : V →W by

T (v) = λ1w1 + · · ·+ λnwn.

Uniqueness is immediate since T (
∑

λiei) =
∑

λiT (ei) =
∑

λiwi, so this is the only way to define T . It remains

to check that T is indeed linear. Let u =
∑

λiei and v =
∑

µiei. Then we have

T (αu+ βv) = T
(∑

(αλi)ei +
∑

(βµi)ei

)
=
∑

(αλi + βµi)wi = αT (u) + βT (v),

which completes the proof.
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This implies our motivation:

Corollary 3.6 (n-dimensional vector spaces are isomorphic)

If V is a n-dimensional vector space, then V ∼= Fn.

Proof. Let {e1, . . . , en} be a basis of V . As in Proposition 3.5, choose w1,w2, . . . ,wn as the standard basis of Fn,

i.e. wi = (0, . . . , 0, 1, 0, . . . , 0)T where the 1 is at the i-th position. Then there is a unique linear transformation

T : V → Fn such that T (ei) = wi, and if v =
∑

λiei we have

T (v) =

n∑
i=1

λiwi = (λ1, λ2, . . . , λn)
T .

This is clearly bijective, so V ∼= Fn as needed.

Remark. Important: You could technically say that all finite-dimensional vector spaces are just Fn and that no

other space is worth caring about. But this seems kind of rude, as spaces often are more than just tuples:

V = {ax2 + bx+ c : a, b, c ∈ R}

is a space of polynomials, and so it has some “essence” to it that you’d lose if you compressed it into (a, b, c).

Moreover, a lot of spaces, like the set of vectors (x, y, z) with x + y + z = 0, do not have an obvious choice of

basis. Thus to cast such a space into Fn would require you to make arbitrary decisions.

We also define a new notation for convenience:

Definition 3.7

Let V be an n-dimensional vector space with B = {e1, . . . , en} as a basis and v ∈ V has v =
∑

λiei. Then the
vector of v w.r.t B is

[v]B = (λ1, λ2, . . . , λn)
T ,

which is well-defined as, again, the linear combination is unique.

so that the isomorphism from V to Fn is just T (v) = [v]B .

Motivation

Consider two vector spaces V and W , with bases {e1, . . . , en} and {f1, . . . , fm} respectively.
Recall in Proposition 3.5 that if we fix some wi, there will be a unique linear map sending ei to wi. Being more
concrete, we can write wi in a basis of W as well, then there is a unique map T : V →W which satisfies

T (e1) = a11f1 + a21f2 + · · ·+ am1fm

and similarly for e2, . . . , en for some aij . So telling you aij would tell you everything you need to know about
T . We can then define “the matrix for T” to be

A =

 | | |
T (e1) T (e2) · · · T (en)

| | |

 =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

. . .
...

am1 am2 · · · amn

 .

So all of this means:

! Keypoint

To define a linear transformation, it suffices to give a matrix.
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Writing the above more rigorously, we have

Corollary 3.8 (Linear transformations are matrices)

Let V,W be finite-dimensional vector spaces over F with bases {e1, . . . , en} and {f1, . . . , fm} respectively, and
let L(V,W ) denote the set of linear transformations from V to W . Then there is a bijection

Mm×n(F )←→ L(V,W )

sending A = (aij) to the unique linear map T (ei) =
∑

ajifj .

Proof. The proof is actually just the argument in the motivation. Nonetheless, a more fancy way of saying the same

thing is to represent the result in a diagram:

V W

Fn Fm

[−]C

T

[−]B

Suppose we are given a linear transformation T : V → W . Then we can define a map Fn → Fm by following

the diagram around. But such a map must be a matrix transformation. If it is represented by a matrix A, then

A[v]B = [T (v)]C . We can then calculate A by figuring out its columns. We write

T (ei) = a1if1 + a2if2 + · · ·+ amifm, (1)

and let ci be the canonical basis of Fn. Then

[T (ei)]C = A[ei]B = Aci

which is exactly the i-th column of A. Such a construction is unique since there is only one T satisfying (1).

Definition 3.9

Given a linear transformation T : V → W , the matrix corresponding to it by the above construction is called
the matrix of T w.r.t basis B = {e1, . . . , en} and C = {f1, . . . , fm}. This is denoted by C [T ]B .

By the diagram, we then have C [T ]B [v]B = [T (v)]C . If V = W and B = C we sometimes write the matrix simply

as [T ]B , then [T ]B [v]B = [T (v)]B .

Caution: Despite of the notation, when computing C [T ]B , we put in elements of B and express the output as linear

combinations of elements of C.

Example 3.10

Here is a concrete example on how to find A. Consider T : R2 → R2 defined by T

(
x1

x2

)
=

(
2x1 − x2

x1 + 2x2

)
.

• Take E = {e1, e2}, the standard basis of R2. Then as

T (e1) =

(
2
1

)
= 2e1 + 1e2 and T (e2) =

(
−1
2

)
= −1e1 + 2e2,

we conclude that [T ]E =

(
2 −1
1 2

)
.

• Similarly, if we take the basis B = {e1+e2, e2}, one can show [T ]B =

(
1 −1
2 3

)
and B [T ]E =

(
2 −1
−1 3

)
.
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Example 3.11

We again let V = {ax2 + bx+ c : a, b, c ∈ R} and B = {1, x, x2} be a basis for it.

Consider the “evaluation at 3” map, which is a linear transformation T : V → R. Choose C = {1} as the basis
of R, then T is represented by

C [T ]B =
(
1 3 9

)
with the columns corresponding to T (1), T (x) and T (x2).

From here, we can actually work out what it means to mulitply two matrices. Suppose we have picked a basis

for three spaces U, V,W . Then given map T : U → V and S : V →W , we can consider their composition S ◦ T , i.e.

U V W

F k Fn Fm

T S

A B

BA

where A represents T and B represents S. Then BA represents the composition S ◦ T :

Proposition 3.12 (Matrix multiplication is composition of linear maps)

Let U, V,W be finite-dimensional vector spaces over F with bases {u1, . . . ,uk}, {v1, . . . ,vn} and {w1, . . . ,wm}
respectively. If T : U → V and S : V →W are linear transformations, then S ◦ T is linear and

(wi)[S ◦ T ](ui) =(wi) [S](vi) · (vi)[T ](ui).

Proof. Verifying that S ◦ T is linear is straightforward. In the following we simply denote [T ] as the matrix of T .

Writing S ◦ T (ui) as a linear combination of wi, we then have

S ◦ T (ui) = S

(∑
k

[T ]kivk

)
=
∑
k

[T ]kiS(vk) =
∑
k

[T ]ki
∑
j

[S]jkwj =
∑
j

(∑
k

[S]jk[T ]ki

)
wj =

∑
j

[S][T ]jiwj ,

which precisely implies that [S][T ] is the matrix representing S ◦ T .

In particular, since function composition is associative, it follows that matrix multiplication is as well.

Motivation

This in fact has a deeper consequence: the correlation between matrices and linear transformations means that
we can define concepts like the determinant or the trace of a matrix, both in terms of an “intrinsic” map
T : V → W and in terms of the entries of the matrix. Since the map T itself doesn’t refer to any basis, the
abstract definition will imply that the numerical definition doesn’t depend on the choice of basis.

To sum up this section and answer the title,

! Keypoint

A matrix is the laziest possible way to specify a linear transformation.

3.3 Image and Kernel

To study functions, it is natural to look at the set of zeroes, or the set of solutions of the function. At the same

time, it is useful to consider the possible outputs of the function, so that we can predict how will the function behave.

Over linear algebra (and in general any algebraic structure), this is the concept of kernel and image.
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Definition 3.13 (Image and kernel)

Let T : U → V be a linear transformation. Then the image of T is

imT = {T (u) : u ∈ U}.

The kernel of T is
kerT = {u : T (u) = 0U}.

It is easy to see that they are subspaces of V and U respectively.

Example 3.14

Let A ∈Mm×n(F ) and T : Fn → Fm be the linear map v 7→ Av. Consider the system of linear equations

m∑
j=1

Aijxj = bi, 1 ≤ i ≤ n.

• The system has a solution iff (b1, . . . , bn) ∈ imT .

• The kernel of T contains all solutions to
∑

j Aijxj = 0.

Image and kernel have a lot of properties; one of them is the following fact that appears often.

Proposition 3.15

Let T : V →W be a linear transformation and v1,v2 ∈ V . Then T (v1) = T (v2) iff v1 − v2 ∈ kerT .

Proof. This is just unfolding the definition:

T (v1) = T (v2) ⇐⇒ T (v1 − v2) = 0 ⇐⇒ v1 − v2 ∈ kerT,

as T is a linear transformation.

Although I advertise the result as appearing often, the more useful corollary is the following:

Corollary 3.16

A linear transformation T is injective if and only if kerT = 0.

Remark. For experts again: this result is standard and can actually be generalised to any group.

For images, a nice result is as follows, which would explain a terminology later on:

Proposition 3.17

Let T : V → W be a linear transformation. Suppose that B = {v1, . . . ,vn} is a basis for V . Then imT =
Span(T (v1), . . . , T (vn)).

Proof. (⊇) clearly holds. For (⊆), let w ∈ imT , then w = T (v) for some v. Write v =
∑

λivi, then

w = T
(∑

λivi

)
=
∑

λiT (vi) ∈ Span(T (v1), . . . , T (vn)),

which completes the proof.

Does this look familiar? Recall from the last section that

[T (vi)]B = [T ]B [vi]B = [T ]Bei = i-th column of [T ]B

where ei is the canonical basis of Fn. So the above proposition can be restated to say
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! Keypoint

imT is the column space of the matrix representing V after fixing a basis.

Hence, we sometimes refer to dim(imT ) as the rank of T , as the dimension is exactly the column rank of [T ]B .

We now proceed to a super important result – not because of its actual statement, but because of how it will give

you the right picture in your head of how a linear transformation is supposed to look.

Theorem 3.18 (Rank-nullity theorem)

Let T : V →W be a linear transformation. Then

dim(imT ) + dim(kerT ) = dimV.

Proof. Let {f1, . . . , fk} be a basis of imT , and note there exists ei ∈ V such that T (ei) = fi. Now let {ek+1, . . . , en}
be a basis for kerT . We claim that B = {e1, . . . , en} is a basis for V (notice that ei ̸= ej even if i ≤ k and j > k,

for if not then fi = T (ei) = T (ej) = 0, which is impossible).

• B is spanning: Let v ∈ V . Since T (v) ∈ imT there exists λi ∈ F such that

T (v) =

k∑
i=1

λifi = T

(
k∑

i=1

λiei

)
,

so v −
∑

λiei ∈ kerT . Thus there exists µj ∈ F such that

v −
k∑

i=1

λiei =

n∑
j=k+1

µjej =⇒ v = λ1e1 + . . .+ λkek + µk+1ek+1 + . . .+ µnen ∈ Span(B).

• B is linearly independent: Suppose
∑

λiei +
∑

µjej = 0V for some λi, µj ∈ F . Then by applying T ,

0W = T

 k∑
i=1

λiei +

n∑
j=k+1

µjej

 =

k∑
i=1

λiT (ei) +

n∑
j=k+1

µjT (ej) =

k∑
i=1

λifi,

so λi = 0 since fi forms a basis. Then
∑

µjej = 0V , so µj = 0 too since ej , k + 1 ≤ j ≤ n forms a basis.

This implies the result since dim(imT ) = k,dim(kerT ) = n− k and dimV = n.

From the proof, we can then draw such a picture visualising a linear transformation:

V

e1

e2
...

ek

ek+1

ek+2
...

en

W

f1

f2
...

fk

fk+1
...

fm

T

0

0

0

kerT

imT

In particular, for T : V →W , one can write V = kerT ⊕ V ′, so that T annihilates its kernel while sending V ′ to

an isomorphic copy of itself, imT , in W .

30



Bendit Chan 3.4 Change of basis

The theorem also, finally, explains the second interpretation in the motivation back in 2.6. Recall that we

discussed how the system has infinitely many solutions. In general, consider a system of linear equations

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm

The system is called homogeneous if b1 = b2 = · · · = bm = 0. In this case we can write the system in matrix

form, i.e. Ax = 0, and consider the map A : Fn → Fm via x 7→ Ax. Then the set of solutions is kerA and by

rank-nullity theorem,

dim(kerA) = n− dim(imA) = n− rankA.

Hence,

• if rankA = n, there is only one solution, i.e. the trivial solution;

• if rankA < n, then dim(kerA) ≥ 1 so if F is infinite then there are infinitely many solutions.

Remark. Final side-note: For non-homogeneous systems, the result is similar assuming b ∈ CSp(A). If b ̸∈ CSp(A),

then the system is inconsistent.

3.4 Change of basis

Recall that given a linear transformation T : V →W and bases B for V , C for W , we obtain a matrix C [T ]B :

V W

Fn Fm

[−]C

T

[−]B

C [T ]B

Focus on the case V = W but the bases are different. Then these will give rise to two different isomorphisms to

Fn, and the two bases can be related by a matrix map P again, i.e.

V V

Fn Fn

[−]C

id

[−]B

P

Definition 3.19 (Change of basis matrix)

The matrix P is defined to be the change of basis matrix from B to C.

We then have from definition that P = C [id]B and P [v]B = [v]C for all v ∈ V . Writing the matrix out explicitly,

it can be expressed as follows: if B = {ei} and C = {fi}, then we can write ei =
∑

j λjifj and P := (λij), so the

j-th column of P is [ej ]C . Another interpretation of P is as follows:

Proposition 3.20

P = [X]C where X : V → V is the unique linear transformation such that X(fi) = ei.

Proof. The j-th colummn of [X]C is [X(fj)]C = [ej ]C , which is exactly the j-th column of P .
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In comparison of the figures, this means:

V V V V

Fn Fn Fn Fn

id

P P

X

[−]B [−]C [−]C [−]C

• if we fix the elements being mapped (i.e. choose the map to be id), we get P ;

• but if we fix the basis and choose X to send fi to ei, we also get P .

This is unfortunately very confusing:

Caution: In the second interpretation, X takes elements in C to B, but P is called the change of basis matrix

from B to C since P [v]B = [v]C , i.e. it maps vectors written in basis B to them written in basis C.

This is inevitable because both interpretations have their use, so it is actually just a preference to name P as the

change of basis matrix from B to C or vice versa.

Anyways, change of basis matrices have a lot of properties. The most important ones being how we can transform

matrices written in one basis to another:

Proposition 3.21

Let V,B,C, P be as above, then

(i) P is invertible, and P−1 is the change of basis matrix from C to B;

(ii) let T : V → V be a linear transformation, then [T ]C = P [T ]BP
−1.

Proof. The proof can be done directly, or using the diagrams. Here we will do it directly:

(i). Let Q be the change of basis matrix from C to B. Then

QP [v]B = Q[v]C = [v]B .

As v ranges over all of V , [v]B ranges over all of Fn, so QPx = x for all x ∈ Fn, i.e. QP = I. Thus P is

invertible with inverse Q.

(ii). We have [T ]C [v]C = [T (v)]C , and

(P [T ]BP
−1)[v]C = (P [T ]BP

−1)P [v]B = P [T ]B [v]B = P [T (v)]B = [T (v)]C .

Again as this ranges over all v, we have the desired result.

Another method of using the diagrams are probably easier. For instance, in (i), we consider the diagram

V V V

Fn Fn Fn

id

P

[−]B [−]C

Q

[−]B

id

By Proposition 3.12, QP is the matrix representing the map id ◦ id = id with respect to the same basis B.

Then it is clear that QP = I as we clearly have [id]B = I. Similarly one can prove (ii) by a diagram and matrix

multiplication.
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Example 3.22

Let V = R2. Take bases B =

{(
1
1

)
,

(
1
2

)}
and E = {e1 + e2} as the standard basis. Then

• the change of basis matrix P from B to E is E [id]B . We have

id

(
1
1

)
=

(
1
1

)
= e1 + e2 and id

(
1
2

)
=

(
1
2

)
= e1 + 2e2,

so P =

(
1 1
1 2

)
by taking the columns as the scalars;

• thus the change of basis matrix Q from E to B is the inverse of P , which is

(
2 −1
−1 1

)
.

Remark. Suppose we have three bases B,C,D. Again, by Proposition 3.12 we have

D[id]B = D[id]C C [id]B .

In particular, by choosing C as the standard basis E, we obtain

D[id]B = D[id]E E [id]B = (E [id]D)−1
E [id]B

while we notice from the above example that E [id]− is usually much easier to compute. So this provides a faster

method to calculate an arbitrary change of basis matrix.

We conclude the section by giving a final definition of a more generalised notion:

Motivation

Instead of composing two change of basis maps, we can also slip in a linear transformation in the middle. Indeed,
consider a linear transformation T : V →W , and consider the diagram

V V W W

Fn Fn Fm Fm

id

P

[−]B

A

T

Q−1

[−]C

id

B

where P and Q are change of basis matrices, and A represents T . Then by matrix multiplication again,
B = Q−1AP is the matrix representing T w.r.t bases B and C. Note in particular that A and B actually both
represents T , just under different bases.

Hence, we might define the following:

Definition 3.23 (Equivalent matrices)

We say A,B ∈ Mm×n(F ) are equivalent if there are invertible matrices P ∈ Mm×m(F ) and Q ∈ Mn×n(F )
such that A = QBP−1.

Of course, the name has to make sense – and the way it makes sense is exactly given by the motivation:

! Keypoint

Two matrices are equivalent if and only if they represent the same linear map w.r.t different bases.

This marks the end of our discussion for now.
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4 Duality ⋆

You may have learned in high school that given a matrix(
a c
b d

)
,

the trace is the sum along the diagonal a+ d and the determinant is ad− bc. As mentioned earlier, one could define

such words using both the entries of a matrix, or intrinsically in terms of an actual linear map T .

While we might be tempted to naively define the trace of T to be the trace of the matrix [T ]B for some basis,

this raises the question: Why would these random formulas somehow not depend on the choice of the basis?

In this chapter, we will answer the question by giving an intrinsic definition of tr(T ). This will give a coordinate-

free definition as wanted. To do this, we will need to introduce two new constructions: the tensor product V ⊗W

and the dual space V ∨.

4.1 Tensor product

Let’s start off with a motivation:

Motivation

We know that dim(V ⊕W ) = dimV +dimW , even though V ⊕W looks like V ×W . What if we wanted a real
“product” of spaces, with their dimensions multiplied?

For example, again consider
V = {ax2 + bx+ c : a, b, c ∈ R}

with another space
W = {dy + e : d, e,∈ R}.

If we take the direct sum, we will get some rather unnatural vector space of dimension five: the element can be
thought of as pairs (ax2+ bx+ c, dy+ e). But if we multiply the elements in V and W , we get a vector space
which would contain elements like 4x2y + 5xy + y + 3. In particular, a basis of it is

{x2y, x2, xy, x, y, 1}

and thus has dimension 6.

For this, we resort to the tensor product, which does exactly this, except the “multiplication” is done by a

scary symbol ⊗. We first give the rigorous definition:

Definition 4.1 (Tensor product)

Let V and W be F -vector spaces. The tensor product V ⊗F W is defined as the span of the elements of the
form v ⊗w, subject to the relations

• distributive in V : (v1 + v2)⊗w = v1 ⊗w + v2 ⊗w;

• distributive in W : v ⊗ (w1 +w2) = v ⊗w1 + v ⊗w2;

• (λv)⊗w = v ⊗ (λw).

with scalar multiplication defined by λ · (v ⊗w) = (λv)⊗w = v ⊗ (λw).

Remark. Some may also say that the ⊗ is bilinear by the given relations, since it is linear in both arguments.

Also, if the context is clear, we will omit the subscript and simply write V ⊗W .

To understand this daunting definition, let’s go back to the example:
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Example 4.2

Following the motivation, the above element might be written as

4x2 ⊗ y + 5x⊗ y + 1⊗ y + 3⊗ 1,

and we can think of ⊗ as a “wall” separating the elements in the two vector spaces.

• There’s no need to do everything in terms of just the monomials, so we can write

(x+ 1)⊗ (y + 1)

and it should be possible to expand it as x⊗ y + 1⊗ y + x⊗ 1 + 1⊗ 1. This explains the distributivity.

• There should also be no distinction between writing 4x2 ⊗ y and x2 ⊗ 4y, or even 2x2 ⊗ 2y, so the scalars
should be free to float around. This explains the final condition.

Let’s look at some other examples:

Example 4.3

• If V is any F -vector space, then V ⊗F F ∼= V . In this case, v ⊗ f is just the scalar multiplication fv.

• Consider R[x] and R[y] as R-vector spaces. Then

R[x]⊗R R[y] ∼= R[x, y],

i.e. tensor product of polynomials in x with polynomials in y turns out to just be two-variable polynomials
(this should not be surprising).

Caution: The elements of V ⊗W really are sums of v ⊗ w: from the previous example, not every polynomial in

R[x, y] can be written as a polynomial in x times a polynomial in y (i.e. in the form f(x)⊗ g(y)), but they can all

be written as sums of xa ⊗ yb.

As suggested by the examples, the basis of V ⊗F W is literally the “product” of the bases of V and W . In

particular, this fulfills our desire that dim(V ⊗W ) = dimV · dimW .

Proposition 4.4 (Basis of V ⊗F W )

Let V,W be finite-dimensional F -vector spaces. If {e1, . . . , en} is a basis of V and {f1, . . . , fm} is a basis of W ,
then ei ⊗ fj over all i, j is a basis for V ⊗F W .

Surprisingly, the proof is a little bit out of reach by the knowledge we have developed until now. We will leave

out the linear independence part, but nonetheless, it is quite easy to show that it is spanning:

Proof of spanning. Let S = {ei ⊗ fj : 1 ≤ i ≤ n, 1 ≤ i ≤ m}. Clearly SpanS ⊆ V ⊗F W .

Now let

λ1(v1 ⊗w1) + λ2(v2 ⊗w2) + · · ·+ λk(vk ⊗wk) ∈ V ⊗F W.

Then since {ei} and {fi} are respectively bases of V and W , we can write each va and wa as linear combinations of

elements of their corresponding basis, i.e.

va =

n∑
i=1

αaiei and wa =

m∑
j=1

βajfj ,

which gives va ⊗ wa =
∑∑

αaiβaj(ei ⊗ fj). Hence the sum
∑

λi(vi ⊗ wi) would also be a linear combination of

the elements ei ⊗ fj , i.e. V ⊗F W ⊆ SpanS, as desired.
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Example 4.5 (Explicit computation)

Let V have basis {e1, e2} and W have basis {f1, f2}. Let v = 3e1+4e2 ∈ V and w = 5f1+6f2 ∈W . Let’s write
v ⊗w in the basis for V ⊗F W :

v ⊗w = (3e1 + 4e2)⊗ (5f1 + 6f2)

= (3e1)⊗ (5f1) + (4e2)⊗ (5f1) + (3e1)⊗ (6f2) + (4e2)⊗ (6f2)

= 15(e1 ⊗ f1) + 20(e2 ⊗ f1) + 18(e1 ⊗ f2) + 24(e2 ⊗ f2).

So you can see why tensor product is a nice “product” to consider if we are interested in V ×W , but with more
structure than just in the way defined by a direct sum.

Remark. Notice that the above essentially implies that we can associate v ⊗w to a matrix (aij) where aij is the

scalar coefficient of ei ⊗ fj . So one might actually “construct” a tensor product by firstly writing

[v](ei) = (v1, v2, . . . , vn)
T

[w](fi) = (w1, w2, . . . , wm)T ,

then saying that

v ⊗w =


v1w1 v1w2 · · · v1wm

v2w1 v2w2 · · · v2wm

...
...

. . .
...

vnw1 vnw2 · · · vnwm


Traditionally, this is called the outer product or Kronecker product of v and w.

Caution: One last warning: much like the Cartesian product A×B of sets, you can tensor together any two vector

spaces V and W over the same field F ; but the relationship between V and W is completely irrelavant.

Thinking ⊗ as a “wall”, it can only pass scalars but otherwise keep the elements of V and W separated. So for

example v ⊗w ̸= w ⊗ v in general even if V = W , just like (x, y) ̸= (y, x) in the set A2. In particular, we have

R[x]⊗R R[x] ∼= R[x, y],

since elements in the two copies of R[x] do not communicate.

We conclude the section by giving what’s known as the “universal property of tensor product”; in fact, it is

often more common to see the following as the definition of tensor product, since it determines V ⊗W up to unique

isomorphism (i.e. if another space P satisfies the conditions, then V ⊗W ∼= P through a unique isomorphism).

We firstly clarify the definition made before:

Definition 4.6

Let V,W,P be F -vector spaces. We say that a map f : V ×W → P is bilinear if for all v,w, λ,

f(λ1v1 + λ2v2,w) = λ1f(v1,w) + λ2f(v2,w)

f(v, λ1w1 + λ2w2) = λ1f(v,w1) + λ2f(v,w2).

which translates into the fact that f is linear in both arguments.

Therefore, for instance, the map ⊗ : V ×W → V ⊗W defined by

(v,w) 7→ v ⊗w

is bilinear by definition.
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We bravely proceed to the main result now (but without proof, as unfortunately the proof involves too much

technical machinery and hence it is omitted here):

Theorem 4.7 (Universal property of tensor products)

Let V,W,P be F -vector spaces. Then for any bilinear map ϕ : V ×W → P , there is a unique linear transfor-
mation ϕ̂ : V ⊗W → P , such that ϕ̂(v ⊗w) = ϕ(v,w) for all v ∈ V and w ∈W .

Representing everything in a diagram, we have

V ⊗W

V ×W

P

⊗

bilinear ϕ

∃ linear ϕ̂

so the universal property says that we can always find ϕ̂ so that the diagram commutes.

Motivation

Final motivation: this section showcases well the theme of abstraction. To define a tensor product V ⊗W , we
might say, in ascending order of abstraction,

(i) V ⊗W is the span of matrices constructed from the Kronecker products;

(ii) V ⊗W is the span of v ⊗w where ⊗ : V ×W → V ⊗W is bilinear;

(iii) V ⊗W is a vector space satisfying the universal property of tensor products.

Although abstract definitions might be hard to grasp, it often provides a better understanding of the object: if
we had simply defined tensor products via a formula involving a matrix, it would be impossible to see that there
is an underlying universal property that governs the whole behaviour.

This theme will appear frequently from now on, for instance when defining the determinant.

4.2 Dual space

We will now move on to the second topic, which is the notion of a dual space.

Definition 4.8 (Dual space)

Let V be an F -vector space. The dual space of V , denoted by V ∨, is defined as the vector space whose
elements are linear transformations from V to F , i.e.

V ∨ = L(V, F ) = {T : V → F : T linear}.

It should be routine to check that this is indeed a vector space, as its name suggests.

Example 4.9

Here are some basic examples:

• If V = R3 and T : V → R sends

x1

x2

x3

 to x1 − x3, then T ∈ V ∨.

• If V = Q[
√
2] := {a+ b

√
2 : a, b ∈ Q} and T : V → Q sends a+ b

√
2 to a, then T ∈ V ∨.

• Let V = RX with elements as real-valued functions f : X → R. Then for any fixed x, the evaluation
map T : V → R at x, defined by f 7→ f(x) is in V ∨.
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Now let’s try to find a basis for V ∨, by computing an explicit example. Suppose V = R3 and we just use the

canonical basis B. Then we can think of elements of V as column vectors, like

v =

2
5
9

 ∈ V.

Now recall that a linear map T ∈ V ∨ can be represented by a 1× 3 matrix, i.e. a row vector, like

[T ]B =
(
3 4 5

)
.

Then

T (v) =
(
3 4 5

)2
5
9

 = 71.

More precisely, we have from previous sections that to specify a linear map V → F , we only have to specify

the matrix [T ]B, i.e. where each basis elements of V goes. In the above example, T sends e1 to 3, e2 to 4

and e3 to 5, so f sends 2e1+5e2+9e3 to 2 ·3+5 ·4+9 ·5 = 71. Hence a natural basis is the linear maps represented

by
(
1 0 0

)
,
(
0 1 0

)
and

(
0 0 1

)
.

This is made precise by:

Proposition 4.10 (The dual basis for V ∨)

Let V be a finite-dimensional F -vector space with basis e1, e2, . . . , en. For each i, consider the linear transfor-
mations e∨i : V → F defined by

e∨i (ej) =

{
1 i = j

0 i ̸= j.

Then {e∨1 , e∨2 , . . . , e∨n} is a basis of V ∨, called the dual basis of V ∨.

Proof. Since linear maps are characterised by the values on a basis, there exists a unique choice of e∨i ∈ V ∨ for all

i, so they are at least defined. We now show that they form a basis.

Suppose T ∈ V ∨. We have

T =

n∑
i=1

λie
∨
i ⇐⇒ T (ej) =

n∑
i=1

λie
∨
i (ej) (2)

for all j, since again linear maps are fixed by their image of a basis. But

n∑
i=1

λie
∨
i (ej) = λ1e

∨
1 (ej) + λ2e

∨
2 (ej) + · · ·+ λne

∨
n(ej) = λj ,

so (2) is again equivalent to λj = T (ej). Hence there exists a unique way to write any T ∈ V ∨ as a linear combination

of e∨i , thus {e∨i } is a basis by Proposition 2.16.

Example 4.11

Let’s translate the above example in this notation. We have T = 3e∨1 + 4e∨2 + 5e∨3 , since for instance

T (e1) = (3e∨1 + 4e∨2 + 5e∨3 )(e1)

= 3e∨1 (e1) + 4e∨2 (e1) + 5e∨3 (e1)

= 3 · 1 + 4 · 0 + 5 · 0 = 3,

and similarly for e2 and e3, which is exactly what we wanted
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You might also be inclined to point out that V ∼= V ∨ at this point, since there is an obvious isomorphism ei 7→ e∨i .

In other words, this map might be called “rotating the column vector by 90◦”. The issue is that this isomorphism

depends very much on which basis we choose.

However, it is indeed true that V and V ∨ are isomorphic for finite-dimensional V , but this is simple as we have

from the above proposition that

Corollary 4.12

If V is finite dimensional, then dimV = dimV ∨.

simply because of the fact that their basis have the same size. We furthermore know that any two F -vector spaces

with the same dimension are isomorphic. In light of this, the fact that V ∼= V ∨ is not particularly impressive.

Remark. In general, this is not true for infinite-dimensional vector spaces, but in that case we still have

dimV ∨ ≥ dimV,

since we gave a set of dimV linear independent vectors in the proposition (assuming that the dimension for an

infinite-dimensional vector space makes sense).

4.3 The trace

We are finally ready to define the trace. But before that, we need a useful result first. The goal is to prove:

! Keypoint

If V and W are finite-dimensional F -vector spaces, then V ∨ ⊗W represents linear maps V →W .

In other words, we will try to find an isomorphism between V ∨ ⊗W and L(V,W ).

Remark. We didn’t actually define L(V,W ) formally, but it is often denoted by Hom(V,W ) too. (The “Hom”

stands for homomorphism.)

Motivation

The intuition is as follows: suppose V is three-dimensional and W is five-dimensional. Then the linear maps
V →W can be thought as a 5× 3 array of numbers. These maps form a vector space L(V,W ), which will have
dimension 15. But just saying “F 15” is not really that satisfying (what would the basis be in F 15?).

To do better, we want an isomorphism that still preserves some structure, which is precisely V ∨⊗W ∼= L(V,W ).

The actual isomorphism might be terrifying at first sight, so let’s compile an example first:

Example 4.13

Firstly, how do we interpret an element of V ∨ ⊗W as a map V →W? For concreteness, suppose V has a basis
{e1, e2, e3} and W has a basis {f1, f2, f3, f4, f5}. Consider an element of V ∨ ⊗W , say

e∨1 ⊗ (f2 + 2f4) + 4e∨2 ⊗ f5.

We want to interpret this element as a function V →W , so given a v ∈ V we want to output an element of W .
There is really only one way of doing this: feed in v into the V ∨ elements on the left. That is, take the map

v 7→ e∨1 (v) · (f2 + 2f4) + 4e∨2 (v) · f5.

Since e∨i are linear transformations V → F , e∨i (v) is indeed a scalar so the above expression makes sense.

So there is a natural way to interpret any element θ1 ⊗w1 + · · ·+ θm ⊗wm ∈ V ∨ ⊗W as a linear map V →W .

The claim is that in fact, every linear map V →W has such an interpretation.
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Writing down something for the general case, we have:

Theorem 4.14 (V ∨ ⊗W is linear maps V →W )

Let V and W be finite-dimensional vector spaces. The map

Ψ : V ∨ ⊗W → L(V,W )

defined via sending θ1 ⊗w1 + · · ·+ θm ⊗wm to the linear map

v 7→ θ1(v)w1 + · · ·+ θm(v)wm

is an isomorphism of vector spaces, i.e. every linear map V →W can be uniquely represented as an element of
V ∨ ⊗W in this way.

Proof. This looks intimidating, but it’s actually not that difficult. Ψ is clearly a linear transformation, so it suffices

to show that it is bijective. We proceed in two steps:

• We firstly check that dim(V ∨ ⊗W ) = dim(L(V,W )). Indeed, V ∨ ⊗W has dimension dimV · dimW since

dimV ∨ = dimV . But by viewing L(V,W ) as dimV · dimW matrices, it too has dimension dimV · dimW .

• Now we show that Ψ is surjective. Take any T : V → W . Suppose V has basis {e1, . . . , en} and T (ei) = wi.

Then the element
n∑

i=1

e∨i ⊗wi = e∨1 ⊗w1 + e∨2 ⊗w2 + · · ·+ e∨n ⊗wn

is mapped to T under Ψ, since the image of this element agrees with T on the basis elements ei.

Finally, by the rank-nullity theorem,

dim(imΨ) + dim(kerΨ) = dim(V ∨ ⊗W ).

Yet Ψ is surjective, so imΨ = L(V,W ). By the first step, this implies dim(kerΨ) = 0, i.e. kerΨ = {0V ∨⊗W }.
Hence Ψ is injective too, and thus an isomorphism.

The above is perhaps a bit dense, so here is a concrete example:

Example 4.15

Let V = R2 and take a basis B = {e1, e2} of V . Define T : V → V by

[T ]B =

(
1 2
3 4

)
.

Then we have
Ψ(e∨1 ⊗ e1 + 2e∨2 ⊗ e1 + 3e∨1 ⊗ e2 + 4e∨2 ⊗ e2) = T.

The beauty is that the definition of Ψ is basis-free, i.e. even if we change the basis, although the above
expression will look completely different, the actual element in V ∨ ⊗ V doesn’t change. (Even though we
did choose a basis in proving that it works.)

We are now ready to give the definition of a trace. Recall that a square matrix T can be thought of a map

T : V → V . According to the above theorem,

L(V, V ) ∼= V ∨ ⊗ V,

so every map V → V can be thought of as an element of V ∨ ⊗ V .
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Then:

Definition 4.16 (Trace)

Define the evaluation map ev : V ∨ ⊗ V → F by “collapsing” each tensor (and extending linearly), i.e.
f ⊗ v 7→ f(v). Consider the composed map

tr : L(V, V )
∼=−→ V ∨ ⊗ V

ev−→ F.

The trace of a linear map T : V → V is then defined as the image tr(T ) under the above composed map.

We are often taught that the trace of a matrix is the sum of its diagonal entries. This is explained by the following

example:

Example 4.17

Continuing the last example, we know T is represented by

e∨1 ⊗ e1 + 2e∨2 ⊗ e1 + 3e∨1 ⊗ e2 + 4e∨2 ⊗ e2

in V ∨ ⊗ V . Hence under the evaluation map,

trT = e∨1 (e1) + 2e∨2 (e1) + 3e∨1 (e2) + 4e∨2 (e2) = 1 + 0 + 0 + 4 = 5.

And that is why the trace is the sum of the diagonal entries.

Again, this definition of trace is basis-free: even if we choose another basis fi, we still know that it is the sum of

the diagonal entries, since in that case f∨i (fi) = 1 and f∨i (fj) = 0 for i ̸= j.

We conclude this section by proving a well-known result:

Proposition 4.18

Let T : V → W and S : W → V be linear transformations between finite-dimensional vector spaces V and W .
Then

tr(T ◦ S) = tr(S ◦ T ).

Proof. Consider two tensors f ⊗ v ∈ W∨ ⊗ V and g ⊗ w ∈ V ∨ ⊗W . Recall the map Ψ from Theorem 4.14, then

Ψ(f ⊗ v) : W → V and Ψ(g ⊗w) : V →W . For arbitrary u ∈ V we have

Ψ(f ⊗ v) ◦Ψ(g ⊗w)(u) = Ψ(f ⊗ v)(g(u)w) = f(g(u)w)v = f(w)g(u)v = Ψ(f(w) · g ⊗ v)(u),

Hence Ψ(f ⊗ v) ◦Ψ(g ⊗w) = Ψ(f(w) · g ⊗ v). By taking trace, this means

tr(Ψ(f ⊗ v) ◦Ψ(g ⊗w)) = tr(Ψ(f(w) · g ⊗ v)) = f(w) ev(g ⊗ v) = f(w)g(v)

which is clearly symmetric if we swap the order of composition.

Now, as T and S can be represented by a linear combination of elements of the form gi ⊗ wi ∈ V ∨ ⊗ W

and fi ⊗ vi ∈ W∨ ⊗ V respectively, by linearity we have S ◦ T as a linear combination of elements of the form

Ψ(fi ⊗ vi) ◦Ψ(gj ⊗wj) ∈ L(V, V ) (and similarly T ◦ S). This means that

tr(S ◦ T ) =
∑
i,j

tr(Ψ(fi ⊗ vi) ◦Ψ(gj ⊗wj)) =
∑
i,j

tr(Ψ(gj ⊗wj) ◦Ψ(fi ⊗ vi)) = tr(T ◦ S),

as desired.
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5 Determinant

If you came from the last section, you might be fascinated (or frightened) by the basis-free definition of trace.

We could do the same thing for determinants as well, but instead let’s take a completely different route here: we are

going to define determinants simply by the formula everyone knows, to show different levels of abstraction.

Remark. To make this section complete, I have also included an optional part of defining an intrinsic definition of

detT at the end.

5.1 Definitions and properties

Let’s cut to the chase and give the definition first:

Definition 5.1 (Minors and Determinants)

Let A ∈ Mn(F ), the space of n × n matrices with entries in F . The ij-minor of A, denoted by Aij , is the
(n− 1)× (n− 1) matrix obtained by deleting the i-th row and the j-th column from A.

Now write A = (aij). The determinant of A, denoted by det(A) or |A|, is defined inductively:

• For n = 1: det(A) = a11.

• Suppose the determinant of an (k− 1)× (k− 1) matrix has already been defined. Then for n = k, define:

det(A) =

n∑
j=1

(−1)1+ja1j det(A1j) = a11 det(A11)− a12 det(A12) + · · ·+ (−1)n+1a1n det(A1n).

Note that the definition makes sense since A1j is of dimension (k − 1)× (k − 1).

This definition is sometimes referred to as the expansion along the first row of A. For instance,

∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣ = a11a22 − a12a21 and

∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣ = a11

∣∣∣∣∣a22 a23

a32 a33

∣∣∣∣∣− a12

∣∣∣∣∣a21 a23

a31 a33

∣∣∣∣∣+ a13

∣∣∣∣∣a21 a22

a31 a32

∣∣∣∣∣ ,
which you should already be familiar with.

Remark. This is not the only way to define the determinant: we will see another way later, but there is yet another

definition using the notion of “the sign of a permutation”.

Example 5.2

Consider the following 3× 3 matrix over R:

A =

 1 2 0
2 0 −1
−1 2 1

 .

Then its determinant can be computed by

det(A) = 1 det

(
0 −1
2 1

)
− 2 det

(
2 −1
−1 1

)
+ 0

= (0 · 1− (−1) · 2)− 2(2 · 1− (−1) · (−1))
= 2− 2 = 0
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We will now develop some crucial properties of determinants which will make calculations much simpler. Essen-

tially this reduces to considering how does the determinant change when we apply row operations.

Proposition 5.3 (Basic properties of determinants)

The determinant satisfies the following:

(i) (Linearity in row) If λ ∈ F , v ∈ Fn and the following matrices are equal except in the denoted row, then

det


...
λv
...

 = λ det


...
v
...

 and det


...
v1

...

+ det


...
v2

...

 = det


...

v1 + v2

...

 .

(ii) (Identical consecutive rows) If two consecutive rows of a matrix is equal, then the determinant is 0, i.e.

det


...
v
v
...

 = 0.

(iii) (Determinant of identity matrix) det(In) = 1.

Proof. The proof of these are simple but extremely messy, so we shall only show the first half of (i):

We will induct on n. The case n = 1 is trivial. Suppose the result holds for (n− 1)× (n− 1) matrices, and let

A =


...
λv
...

 and B =


...
v
...


where the two matrices differ in row l. We now split into two cases:

l > 1 The first row of A is the same as that of B, so

det(A) =

n∑
j=1

(−1)1+jb1j det(A1j).

But for each j, the (l − 1)-th row of A1j is λ times the (l − 1)-th row of B1j while all the other rows are the

same. By induction hypothesis we have det(A1j) = λ det(B1j). This gives det(A) = λdet(B) as needed.

l = 1 The first row of A is (λb11, λb12, . . . , λb1n), so by the definition of determinants,

det(A) =

n∑
j=1

(−1)1+jλb1j det(A1j) = λ

n∑
j=1

(−1)1+jb1j det(A1j).

But the minors A1j and B1j are the same, which gives the result.

Now recall the elementary row operations:

• multiply a row by a non-zero factor;

• add a multiple of a row to another;

• swap two rows.

We have handled the first operation, so we shall cover the rest as follows.
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Proposition 5.4 (Row operations on determinants)

Let A,B ∈Mn(F ). Then

(i) if B is obtained from A by swapping two consecutive rows, then det(B) = −det(A);

(ii) if B is obtained from A by swapping any two rows, then det(B) = − det(A);

(iii) if B is obtained from A by adding a multiple of a row to another, then det(B) = det(A).

Proof. Clearly (ii) implies (i), but we need to prove (i) first in order to obtain (ii).

(i) Denote the two rows of A by vi and vi+1. Then

0 = det


...

vi + vi+1

vi + vi+1

...

 = det


...
vi

vi

...

+ det


...
vi

vi+1

...

+ det


...

vi+1

vi

...

+ det


...

vi+1

vi+1

...

 = det(A) + det(B).

(ii) We first show that if A has any two rows equal, then the determinant is 0.

Indeed, we can repeatedly interchange consecutive rows of A to end up with a matrix B with two consecutive

rows equal. By (i), det(B) = ±det(A). But then det(B) = 0.

Now by redoing the proof of (i) with the two equal rows arbitrarily placed, the result follows.

(iii) Suppose B is obtained from adding λ times row i in A to row j. Then

det(B) = det



...
vi

...
λvi + vj

...


= det



...
vi

...
λvi

...


+ det



...
vi

...
vj

...


= λ det



...
vi

...
vi

...


+ det(A) = det(A),

as desired.

As a result, this summarises to

! Keypoint

If A,B are row-equivalent, then det(A) = µdet(B) for some non-zero µ ∈ F .

In fact, we even have the following stronger theorem, which is one of the most useful application of determinants:

Theorem 5.5

A is row-equivalent to In iff det(A) ̸= 0.

Proof. The above keypoint shows the (⇒) direction, since det(In) = 1.

For the other direction, suppose A is not row-equivalent to In. Then it is row-equivalent to a matrix B with a

row of zeroes, since it has rank less than n. WLOG assume this is the first row, then det(B) = 0 and it follows from

the keypoint again that det(A) = 0.
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Motivation

Note that the statement “A is row-equivalent to In” has multiple equivalent formulations. Indeed, from previous
discussions, all of the following are equivalent to it:

• A is invertible;

• A is non-singular (i.e. the only solution to Ax = 0 is x = 0);

• A has rank n;

• the rows/columns of A are linearly independent.

Having established the notion of determinants, we now have yet another a systematic method to say whether
these conditions hold true by simply computing the determinant.

Another corollary after we have determined the effects of row operations on determinants is that we can now

expand along any row:

Proposition 5.6 (Expansion along the i-th row)

Let A ∈Mn(F ) and 1 ≤ i ≤ n. Then

det(A) =

n∑
j=1

(−1)i+jaij det(Aij).

Proof. Let B be the matrix A with rows 1 and i exchanged, then

det(A) = −det(B) = −
n∑

j=1

(−1)1+jaij det(B1j) =

n∑
j=1

(−1)jaij det(B1j).

Comparing Aij with B1j , they look like

a11 a12 · · · a1j · · · a1n
a21 a22 · · · a2j · · · a2n
...

...
...

ai1 ai2 · · · aij · · · ain
...

...
...

am1 am2 · · · amj · · · amn





ai1 ai2 · · · aij · · · ain
a21 a22 · · · a2j · · · a2n
...

...
...

a11 a12 · · · a1j · · · a1n
...

...
...

am1 am2 · · · amj · · · amn


so most of their entries are the same, except for a different permutation of the rows. In particular we can swap (i−2)

pairs of rows in B1j to obtain Aij , so det(B1j) = (−1)i−2 det(Aij) = (−1)i det(Aij). This implies the result.

Example 5.7 (Determinant of upper triangular matrix)

Consider an n× n upper triangular matrix:

A =


a11

a22 ∗
a33

0
. . .

ann

 .

Then det(A) = a11a22 . . . ann. Indeed, we can expand along the last row, then det(A) = ann det(Ann). Induc-
tively, this implies the result.
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We now move on to showing that determinant is multiplicative. This will eventually help us establish more

properties of determinants.

Lemma 5.8

Let A ∈Mn(F ) and let E ∈Mn(F ) be an n× n elementary matrix. Then det(EA) = det(E) det(A).

Proof. Recall that EA is the matrix obtained by applying the corresponding row operation of E onto A. Hence by

above, det(EA) = µdet(A) for some µ ∈ F . But at the same time det(E) = det(EIn) = µdet(In) = µ since µ only

depends on the row operation. The result follows.

You might notice that this implies det(AB) = det(A) det(B) already, by a simple induction argument. But we

still have to deal with the case when det(A) or det(B) is 0.

It boils down to the following lemma, which we shall not prove since it is quite simple:

Lemma 5.9

Suppose A,B ∈Mn(F ). Then AB is singular if and only if at least one of A and B is singular.

Using both lemmas, we finally deduce the desired result.

Theorem 5.10 (Determinant is multiplicative)

Let A,B ∈Mn(F ). Then det(AB) = det(A) det(B).

Proof. If det(AB) = 0, then this is Lemma 5.9. Otherwise, we can write

A = E1E2 · · ·Er and B = E′
1E

′
2 · · ·E′

s

as products of elementary matrices. This gives det(A) = det(E1) · · · det(Er) and det(B) = det(E′
1) · · · det(E′

s).

Multiplying them gives the desired result.

This has a myriad of consequences:

Proposition 5.11

Let A ∈Mn(F ). We have

(i) det(A−1) = 1/ det(A) if A is invertible;

(ii) det(AT ) = det(A);

(iii) expansion along columns works: det(A) =
∑

i(−1)i+jaij det(Aij).

Proof. All of these are quite trivial:

(i). Follows from det(A) det(A−1) = det(In) = 1.

(ii). One could check that det(ET ) = det(E) for elementary matrix E, by listing the three cases of E. Write

A = E1 . . . Er, then

det(AT ) = det(ET
r ) · · · det(ET

1 ) = det(E1) · · · det(Er) = det(A).

(iii). Transpose A and apply the corresponding result for expansion along the j-th row of the transpose.
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5.2 Some applications

We will go through two applications of determinants here: one is a useful special case, and the other one provides

another way to compute inverses and solutions of a system.

Proposition 5.12

Let n ≥ 2 and x1, . . . , xn ∈ F . Consider the following n× n matrix:
1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
...

...
. . .

...
1 xn x2

n · · · xn−1
n

 .

The determinant of this matrix is then ∏
1≤i<j≤n

(xj − xi),

also called the Vandermonde determinant.

Proof. We can now use row and column operations. So we apply column operations

Cn 7→ Cn − x1Cn−1, Cn−1 7→ Cn−1 − x1Cn−2, . . . , C2 7→ C2 − x1C1,

all of which does not change the determinant. This gives

det


1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
...

...
. . .

...
1 xn x2

n · · · xn−1
n

 = det


1 0 0 · · · 0
1 x2 − x1 x2(x2 − x1) · · · xn−2

2 (x2 − x1)
...

...
. . .

...
1 xn − x1 xn(xn − x1) · · · xn−2

n (xn − x1)

 .

Expanding along the top row and pulling out factors, this is equal to

(x2 − x1) · · · (xn − x1) · det

1 x2 · · · xn−2
2

...
...

. . .
...

1 xn · · · xn−2
n


but the remaining determinant is an (n − 1) × (n − 1) Vandermonde determinant too. Thus the result follows by

induction, and the base case n = 2 is clear.

In particular, notice that ∏
1≤i<j≤n

(xj − xi) = 0 ⇐⇒ xi = xj for some i ̸= j.

This implies the following cute corollary:

Corollary 5.13

Any polynomial p(x) = a0 + a1x+ · · ·+ an−1x
n−1 with coefficients in F has at most n− 1 distinct roots in F .

Proof. Suppose x1, . . . , xn ∈ F are roots of p, then we have

a0

1
...
1

+ a1

x1

...
xn

+ · · ·+ an−1

xn−1
1
...

xn−1
n

 = 0.

Since a0, . . . , an−1 are not all zero, the columns of the Vandermonde matrix are linearly dependent, and thus its

determinant is 0. Hence xi = xj for some i ̸= j.
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Determinants can also be used to find the inverse of a matrix. This relies on the following definition:

Definition 5.14

Let A = (aij) ∈Mn(F ). For 1 ≤ i, j ≤ n, the ij-th cofactor of A is

cij = (−1)i+j det(Aij).

The matrix C = (cij) ∈Mn(F ) is then called the matrix of cofactors of A.

Notice that if we expand det(A) along the j-th column, we have

det(A) =

n∑
i=1

(−1)i+jaij det(Aij) =

n∑
i=1

cijaij ,

but this is precisely the j-th diagonal term of CTA. Turns out these are the only non-zero terms:

Proposition 5.15

Let A ∈Mn(F ) and C its matrix of cofactors. Then

CTA = det(A)In.

In particular, if det(A) ̸= 0, then A−1 = 1
det(A)C

T .

Proof. We want to compute

(CTA)jk =

n∑
i=1

cijaik

for j ̸= k. Consider a matrix A′ same with A but with the j-th column replaced by the k-th column, i.e. a′ij = aik.

Notice that the calculation of cij doesn’t involve the j-th column of A: the ij-minor of A removes the j-th column.

Hence the ij-th cofactor c′ij of A′ is equal to cij . Thus

n∑
i=1

cijaik =

n∑
i=1

c′ija
′
ij = det(A′) = 0

since A′ has two identical columns. This completes the proof.

Remark. The matrix CT is sometimes called the adjugate matrix of A, denoted by adj(A).

This provides a more computational method to find the inverse:

Example 5.16

Consider the matrix A =

−2 3 2
6 0 3
4 1 −1

. One can compute that

adj(A) =

−3 18 6
5 −6 14
9 18 −18

T

=

−3 5 9
18 −6 18
6 14 −18

 ,

so it remains to compute the determinant of A. But instead of expanding again, we can utilise the identity
adj(A)A = det(A)In and compare the 11-term on both sides. This gives

det(A) = (−3)(−2) + (5)(6) + (9)(4) = 72,

and so the inverse of A is obtained by directly dividing adj(A) by 72.
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Although the method of cofactors is not very useful for larger matrices, it does serve a theoretical consequence:

! Keypoint

Entries of the inverse of a matrix are rational functions, i.e. of the form p(x)/q(x) for some polynomials p, q.

Here, the variable x are the entries of the matrix, and indeed, this follows from the fact that the determinant of

an n×n matrix is a polynomial function of the n2 entries. In particular, if F = R or C, then this map is continuous.

We end the section by giving one last application, called the Cramer’s Rule for finding solutions of a system.

Proposition 5.17 (Cramer’s Rule)

Let A ∈ Mn(F ) and b = (b1, . . . , bn)
T ∈ Fn. Consider the equation Ax = b. Suppose A is invertible, so this

has a unique solution
x = (x1, . . . , xn)

T = A−1b.

For 1 ≤ i ≤ n, denote Ai as the result of replacing the i-th column of A by b. Then we have

xi = det(Ai)/ det(A).

Proof. Write A−1 = (a′ij), so

xi =

n∑
j=1

a′ijbj .

But by A−1 = 1
det(A)C

T and the definition of C, we have

det(A)xi =

n∑
j=1

cjibj =

n∑
j=1

(−1)i+j det(Aji)bj = det(Ai)

where the last equality comes from expanding det(Ai) down column i.

5.3 Wedge product ⋆

As before, we now want to define the determinant of a linear transformation. A näıve way to do this is to define

something as follows:

Definition 5.18 (Determinant of linear map (näıve))

Suppose V is a finite dimensional F -vector space with basis B and T : V → V is a linear transformation. The
determinant of T is then det([T ]B).

To check that this works, we have to answer the question we raised many times: why does this definition of the

determinant not depend on the choice of the basis? This is answered by some of the tools developed before:

Proposition 5.19

The determinant det(T ) does not depend on the choice of the basis.

Proof. Let C be another basis of V , so we want to check det([T ]B) = det([T ]C). But we know that

[T ]C = C [id]B [T ]B B [id]C = P [T ]BP
−1

where P = C [id]B is the change of basis matrix from B to C. Hence,

det([T ]C) = det(P ) det([T ]B) det(P
−1) = det([T ]B)

as desired.
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But of course we are not so easily satisfied. The goal of this section is then to give the basis-free definition of

the determinant. Turns out, this will trivialise several properties of the determinant (e.g. that the determinant is

multiplicative).

This requires something called the wedge product, which looks at first like the tensor product V ⊗ V but with

some extra relations.

Definition 5.20 (2-wedge product)

Let V be an F -vector space. The 2-wedge product Λ2(V ) is defined as the span of the elements of the form
v ∧w (where v,w ∈ V ), subject to the same relations as ⊗:

• distributive in V : (v1 + v2) ∧w = v1 ∧w + v2 ∧w;

• distributive in W : v ∧ (w1 +w2) = v ∧w1 + v ∧w2;

• (λv) ∧w = v ∧ (λw).

but with two additional relations:

• v ∧ v = 0;

• v ∧w = −w ∧ v.

Again, scalar multiplication is defined by λ · (v ∧w) = (λv) ∧w = v ∧ (λw).

Remark. In fact, the relation v ∧w = −w ∧ v is extraneous: expanding (v +w) ∧ (v +w) = 0 gives the desired

relation, so v ∧ v = 0 is the only new requirement.

You might wonder, what are the two new relations? And how is this related to the determinant? The following

example might give a hint:

Example 5.21 (Explicit computation)

Let V = R2, and let v = ae1 + be2,w = ce1 + de2. Now let’s compute v ∧w in Λ2(V ):

v ∧w = (ae1 + be2) ∧ (ce1 + de2)

= ac(e1 ∧ e1) + bd(e2 ∧ e2) + ad(e1 ∧ e2) + bc(e2 ∧ e1)

= ad(e1 ∧ e2) + bc(e2 ∧ e1)

= (ad− bc)(e1 ∧ e2).

What is ad− bc? You might already recognize it

• as the area of the parallelogram formed by v and w; or

• as the determinant of

(
a c
b d

)
. In fact, the determinant is meant to interpret hypervolumes.

0

w = ce1 + de2

v = ae1 + be2

v +w

ad− bc
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This is absolutely no coincidence: the wedge product is designed to interpret signed areas. You can see why

the condition (λv)∧w = v ∧ (λw) would make sense now, and now of course you know why v ∧ v should be 0: it is

an area zero parallelogram. The miracle here is that the only additional requirement is v ∧ v = 0, and suddenly the

wedge product will do all our work of interpreting volumes.

Recall from before that the basis for V ⊗W is ei ⊗ fj over all i, j. In analog to this, we have:

Proposition 5.22 (Basis of Λ2(V ))

Let V be a finite-dimensional vector space with basis e1, . . . , en. Then ei∧ej over all i < j is a basis for Λ2(V ).

Remark. In particular, this implies that dimΛ2(V ) =
(
n
2

)
.

This is natural since ei ∧ej = −ej ∧ei. Hence by removing all the extra basis elements, we are left with the ones

with i < j. We will not prove this result since it is quite similar with the one before.

Now, we extend our results by defining a multi-dimensional wedge product:

Definition 5.23

Let V be an F -vector space and m a positive integer. The m-wedge product Λm(V ) is defined as the span of
elements of the form

v1 ∧ v2 ∧ · · · ∧ vm

subject to the relations

• distributive in any term: · · · ∧ (v1 + v2) ∧ · · · = (· · · ∧ v1 ∧ · · · ) + (· · · ∧ v2 ∧ · · · );

• · · · ∧ (λv1) ∧ v2 ∧ · · · = · · · ∧ v1 ∧ (λv2) ∧ · · · ;

• · · · ∧ v ∧ v ∧ · · · = 0;

• · · · ∧ v ∧w ∧ · · · = −(· · · ∧w ∧ v ∧ · · · ).

Again, scalar multiplication is defined similar to before.

Although the definition is quite wordy, it just says

• we should be able to add products like before;

• you can put constants onto any of the m components; and

• switching any two adjacent wedges negates the whole wedge.

Note that any element of the form

· · · ∧ v ∧ · · · ∧ v ∧ · · ·

is still zero. Similar to be before, we again have (but will not prove):

Proposition 5.24 (Basis of Λm(V ))

Let V be a finite-dimensional vector space with basis e1, . . . , en. Then

ei1 ∧ ei2 ∧ · · · ∧ eim

where
1 ≤ i1 < i2 < · · · < im ≤ n

is a basis for Λm(V ).

Remark. In particular, this implies that dimΛm(V ) =
(
n
m

)
.
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We are finally ready to define the determinant. Suppose T : V → V is a linear transformation. We claim that

the map Λm(V )→ Λm(V ) given on wedges by

v1 ∧ v2 ∧ · · · ∧ vm 7→ T (v1) ∧ T (v2) ∧ · · · ∧ T (vm)

and extending linearly to all of Λm(V ) is a linear map. We call this map Λm(T ).

Example 5.25

Let V = R4 with standard basis ei. Consider a map with T (e1) = e2, T (e2) = 2e3, T (e3) = e3 and T (e4) =
2e2 + e3. Then, for example, Λ2(T ) sends

e1 ∧ e2 + e3 ∧ e4 7→ T (e1) ∧ T (e2) + T (e3) ∧ T (e4)

= e2 ∧ 2e3 + e3 ∧ (2e2 + e3)

= 2(e2 ∧ e3 + e3 ∧ e2)

= 0.

However, it turns out that this map is special for m = n:

Proposition 5.26

Let T : V → V be a linear transformation, then ΛdimV (T ) is a multiplication by some constant.

Proof. Suppose V has dimension n. Then Λn(V ) has dimension
(
n
n

)
= 1, so it is isomorphic to the base field F .

Hence Λn(T ) can be thought of as a linear map from F to F . However any linear map f from F to F is precisely

a multiplication by a constant: f(x) = f(x · 1) = xf(1) = cx where c = f(1). The result follows.

Thus, it makes sense to define:

Definition 5.27 (Determinant of linear map (basis-free))

Suppose V is an n-dimensional vector space. Then Λn(T ) is a multiplication by some constant c. The deter-
minant of T is then defined as c = det(T ).

Again, in this way the determinant is basis-free, since we defined it in terms of Λn(T ). We also have

Λn(S ◦ T ) = Λn(S) ◦ Λn(T )

by definition, so we get det(S ◦ T ) = det(S) det(T ) for free.

Example 5.28

Let V = R2 again with basis B = {e1, e2}. Let T : V → V be represented by

[T ]B =

(
a c
b d

)
.

In other words, T (e1) = ae1 + be2 and T (e2) = ce1 + de2.

Now let’s consider Λ2(V ). It has a basis e1 ∧ e2. Then Λ2(T ) sends it to

Λ2(T )(e1 ∧ e2) = T (e1) ∧ T (e2) = (ad− bc)(e1 ∧ e2).

So Λ2(T ) : Λ2(V )→ Λ2(V ) is a multiplication by det(T ) = ad− bc.

Remark. More generally, if we replace 2 by n, and write out the result of expanding

(a11e1 + a21e2 + · · ·+ an1en) ∧ · · · ∧ (a1ne1 + a2ne2 + · · ·+ annen),

we will indeed get the formula for n× n determinants.
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6 Eigen-things

We know that a linear map T from V to V is really just a square matrix. So what is the simplest type of linear

map? It would be multiplication by some scalar λ, which would have corresponding matrix (in any basis!)

[T ]B =


λ 0 · · · 0
0 λ · · · 0
...

...
. . .

...
0 0 · · · λ

 .

That’s perhaps too simple though. If we had a fixed basis e1, . . . , en then another very simple operation would

just be scaling each basis element ei by λi, i.e.

[T ]B =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 .

These maps are more general. Indeed, you can, for example, compute T 100 easily: the maps sends ei 7→ λ100
i ei.

Doing this with an arbitrary matrix would have been a disaster.

Of course, most linear maps are probably not that nice. Or are they?

Motivation

Let V be some two-dimensional vector space with e1 and e2 as basis elements. Consider a map T : V → V by
e1 7→ 2e1 and e2 7→ e1 + 3e2, i.e.

[T ]{e1,e2} =

(
2 1
0 3

)
.

This doesn’t look appealing until we realise we can rewrite it as

e1 7→ 2e1

e1 + e2 7→ 3(e1 + e2).

So suppose we change to the basis {e1, e1 + e2}, then

[T ]{e1,e1+e2} =

(
2 0
0 3

)
and so our random-looking map, under a suitable change of basis, looks like the nice maps we described above!

In this section, we will be making our luck, so that arbitrary matrices can be written into our desired form. This

requires the notion of eigenvalues and eigenvectors, as we shall introduce now.

6.1 Definitions

In the above example, we saw that there were two very nice vectors, e1 and e1 + e2, for which T did something

very simple. Naturally, these vectors have a name:

Definition 6.1 (Eigenvalues and eigenvectors)

Suppose V is a vector space over F and T : V → V is a linear map. We say that λ ∈ F is an eigenvalue of T
if there is a non-zero vector v ∈ V with T (v) = λv. Such a vector v is called an eigenvector of T .

Of course, one could then define the same notion for matrices: given a matrix A ∈ Mn(F ), we require Av = λv

instead. It is easy to show that the eigenvalues of T are the same as the eigenvalues of [T ]B , where B is a basis. So,

from the above example,
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Example 6.2

Let T : V → V be a linear map, with [T ]{e1,e2} =

(
2 1
0 3

)
as before. Then

• e1 and e1 + e2 are eigenvectors with eigenvalues 2 and 3 respectively.

• Of course, 5e1 is also a 2-eigenvector.

• And, 7e1 + 7e2 is also a 3-eigenvector.

Continuing the example, if we change to the basis B = {e1, e1 + e2}, we have the relation

[T ]B = B [id]E E [T ]E E [id]B = P−1AP

where E is the basis {e1, e2}. But D := [T ]B is a diagonal matrix, so from A = PDP−1 we have

Ak = (PDP−1)(PDP−1) · · · (PDP−1) = PDkP−1

and Dk is much easier to compute.

This raises a few questions:

• Does every linear transformation (or matrix) have eigenvectors, or more generally, n eigenvectors?

• If there are n eigenvectors, must they form a basis of V ?

• If so, after changing the basis, must we obtain a diagonal matrix?

Unfortunately, the first question is already wrong:

Example 6.3 (Eigenvectors need not exist)

Let V = R2 and let T be the map represented by [T ]E =

(
0 −1
1 0

)
. Then

T (v) = λv =⇒ − v2 = λv1 and v1 = λv2

which gives v = 0V . Note that 0V is not an eigenvector, so this map has no eigenvectors and eigenvalues.

In fact, geometrically, this maps correspond to rotating a vector by 90◦ around the origin, so it is clear that
T (v) is not a multiple of v for any v ∈ V .

However, in some cases, we can still guarnatee the existence of eigenvectors. To classify the precise situations

when this happens, we need a new tool:

Definition 6.4

Let V be a finite-dimensional F -vector space, and B a basis for V . Let T : V → V be a linear map, then the
characteristic polynomial for T is

χT (x) = det(x · id−T ) = det(xIn − [T ]B).

You should be able to deduce the similar definition for a matrix. And again, notice that this does not depend on

the choice of basis B: if we have another basis C then [T ]C = P−1[T ]BP , so

det(xIn − [T ]C) = det(P−1(xIn − [T ]B)P )

= det(P−1) det(xIn − [T ]B) det(P )

= det(xIn − [T ]B).
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The importance of this new tool is that eigenvalues are closely related to it:

Proposition 6.5

Suppose T : V → V is a linear transformation and λ ∈ F . Then λ is an eigenvalue of T if and only if χT (λ) = 0.

Proof. For λ ∈ F , note that λ is an eigenvalue of T if and only if there is a non-zero vector v ∈ V such that

(λ id−T )v = 0. But this means that the matrix (λIn − [T ]B) is singular (where B is any basis), so by previous

discussions this is equivalent to det(λIn − [T ]B) = 0, i.e. χT (λ) = 0.

We also have that the characteristic polynomial have degree at most n (since the term with highest degree comes

from expanding the determinant and the product of the diagonal terms). So we immediately obtain

Corollary 6.6

If T : V → V is a linear map, then T has at most dimV eigenvalues in F .

We will also make use of the following notation:

Definition 6.7

Given a linear transformation T : V → V (or a matrix A ∈ Mn(F ), for which V = Fn), for any λ ∈ F , the
λ-eigenspace Eλ is the set of λ-eigenvectors, together with 0V , i.e.

Eλ = {v ∈ V : T (v) = λv}

Notice that this is a subspace of V : it is a kernel of the transformation λ · id−T , and λ is an eigenvalue if and only

if this is not the zero-subspace. This notation then allows us to state succinctly sentences such as “2 is an eigenvalue

of T with one-dimensional eigenspace spanned by e1”.

Example 6.8

Let’s try to compute the eigenvalues and eigenvectors of the 2× 2 matrix:

A =

(
2 1
−1 0

)
.

We have its characteristic polynomial as

χA(x) = det

(
x− 2 −1
1 x

)
= x2 − 2x+ 1 = (x− 1)2,

so the only eigenvalue of A is 1. Now solving Av = 1v, we have

(A− I2)v = 0 =⇒
(
−1 −1
1 1

)
v = 0 =⇒ v ∈ Span

(
1
−1

)
,

so the eigenvectors are the non-zero scalar multiples of

(
1
−1

)
.

6.2 Diagonalisation

As the name of this section suggests, we now explore the other questions mentioned before. Namely, we will

classify when can we “diagonialise” a linear map (or a matrix), i.e. it becomes a diagonal map after a change of

basis.

Definition 6.9

A linear map T : V → V is diagonalisable if there is a basis of V consisting of eigenvectors of T .

We have to explain the terminology, so we have the following theorem:
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Theorem 6.10

Suppose V is a finite-dimensional F -vector space and T : V → V is a linear map. Then T is diagonalisable if
and only if there is a basis B = {v1,v2, . . . ,vn} of V such that D = [T ]B is diagonal.

Proof. Suppose that B = {v1,v2, . . . ,vn} is any basis of V . Note that vi ̸= 0. Let D = [T ]B . Then, by the definition

of [T ]B , it is a diagonal matrix if and only if T (vi) = diivi for each 1 ≤ i ≤ n. But this is equivalent to vi being an

eigenvector of T with eigenvalue dii, as needed.

Combining with the definition of diagonalisable, this answers the third question from above:

! Keypoint

If the eigenvectors of T form a basis B of V , then [T ]B is diagonal.

In the case of matrices, we can even compute the desired change of basis matrix:

Corollary 6.11

Let A ∈Mn(F ) be a matrix. If its eigenvectors v1, . . . ,vn of A form a basis B of Fn, then P−1AP is a diagonal
matrix, where the columns of P are vi.

Proof. Write TA as the linear map v 7→ Av. Notice that by definition, P = E [id]B . This gives

P−1AP = B [id]E [TA]E E [id]B = [TA]B

which is indeed a diagonal matrix by the keypoint. Moreover, the diagonal matrix have entries λi on its diagonal.

Recall from above the following example. We can extend the example via this result now:

Example 6.12 (Eigenvectors need not exist, but they do in C)

Recall the example where V = R2 and T is the map represented by [T ]E =

(
0 −1
1 0

)
. We have shown that this

has no eigenvalues in R, and hence no eigenvectors in R2.

However, by extending to V = C2 and viewing T as a linear map from C to C,

χT (x) = det

(
x 1
−1 x

)
= x2 + 1 = (x+ i)(x− i)

so we have eigenvalues ±i. Corresponding eigenvectors are

(
i
1

)
for i and

(
−i
1

)
for −i. Since they form a basis

for C, T is diagonalisable over C. By the corollary, we can then write

[T ]E =

(
i −i
1 1

)(
i 0
0 −i

)
diagonal

(
− i

2
1
2

i
2

1
2

)
= P [T ]BP

−1.

Remark. For experts: In general, this means

Theorem 6.13 (Eigenvalues always exist over algebraically closed fields)

Suppose F is an algebraically closed field (i.e. every non-constant polynomial has a root). Let V be a
finite-dimensional F -vector space. Then if T : V → V is a linear map, there exists an eigenvalue λ ∈ F .

which is trivial since eigenvalues are roots of a polynomial, namely, the characteristic polynomial. Of course, there

might not be n distinct eigenvectors, see Example 6.8 where there is only one eigenvalue and one eigenvector,

independent of the base field.
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Now it’s time to answer the second and final question. The following result is useful: essentially, it states

eigenvectors for different eigenvalues are linearly independent.

Theorem 6.14

Suppose V is an F -vector space and T : V → V is a linear map. Let v1, . . . ,vn be the eigenvectors of T with
T (vi) = λivi. If the λi are distinct then v1, . . . ,vn are linearly independent.

Proof. We prove this by induction on n. The base case is by v1 ̸= 0 since v1 is an eigenvector.

For the induction step, assume that the result is true for fewer than n eigenvectors. Suppose α1, . . . , αn and

α1v1 + · · ·+ αnvn = 0.

If αi = 0 for some i, then by induction hypothesis all αi must be zero. So now assume that the αi’s are all

non-zero. Dividing the above equation by α1 and applying T , we have

0 = T (0) = T

(
v1 +

α2

α1
v2 + · · ·+

αn

α1
vn

)
= λ1v1 +

n∑
i=2

λiαi

α1
vi.

Subtracting λ1

α1
times the original equation from this, we have

0 =

(
λ1v1 +

n∑
i=2

λiαi

α1
vi

)
−

(
λ1v1 +

n∑
i=2

λ1αi

α1
vi

)
=

n∑
i=2

(λi − λ1)αi

α1
vi.

By induction hypothesis, we must have (λi − λ1)αi = 0 for all 2 ≤ i ≤ n. Since the λi’s are distinct, we have

αi = 0 for 2 ≤ i ≤ n, contradiction to our assumption. This implies the result.

This immediately implies that

! Keypoint

If T : V → V has dimV distinct eigenvalues, then the eigenvectors of T form a basis of V (i.e. T is diagonalisable).

Another way to put this is that if χT (x) has n distinct roots, then T is diagonalisable. We might generalise the

result, to classify all cases when a linear map T is diagonalisable:

Proposition 6.15

Let V be a finite-dimensional vector space and T : V → V be a linear map. Suppose that T has (distinct)
eigenvalues λ1, . . . , λr, and let Eλi be the λi-eigenspace. Denote Bi to be a basis of Eλi . If

∑
|Bi| = dimV ,

then the union B = B1 ∪ · · · ∪Br is a basis of V , i.e. T is diagonalisable.

Proof. Write Bi = {vi1, . . . ,vin(i)} (so dimEλi
= n(i)). It suffices to show that the vectors vij are linear independent.

Hence suppose that
r∑

i=1

n(i)∑
j=1

αijvij = 0

for some αij ∈ F . Let

wi =

n(i)∑
j=1

αijvij ∈ Span(vi1, . . . ,vin(i)) = Eλi
,

so w1 +w2 + · · ·+wr = 0.

As the λi’s are distinct, Theorem 6.14 gives wi = 0 for all i ≤ r, since any non-zero wi would give us a linear

dependence between these. So for each fixed i,
∑

αijvij = 0. But the vectors vij form a basis for Eλi
and hence are

linearly independent, so αij = 0 for all i, j as needed.
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So we have completely answered the questions. We also note here that if
∑
|Bi| < dimV , then T is not

diagonalisable: we cannot have a basis consisting of eigenvectors. Combining with the above,

! Keypoint

A linear map T : V → V with eigenvalues λi is diagonalisable if and only if
∑

dimEλi
= dimV .

Remark. Final remark: Proposition 6.15 actually has a more succinct formulation; we can show that

Eλ1 + Eλ2 + · · ·+ Eλr =

r⊕
i=1

Eλi

is a direct sum, i.e. each element is represented uniquely. Then T is diagonalisable iff V =
⊕

Eλi
.

6.3 Interlude: A glimpse in inner product spaces

We know now one equivalent formulation for when a linear map is diagonalisable. But how that will be achieved

is still unclear. We will now try to move on to showing that a class of linear maps (and matrices) are diagonalisable

using the above results, but that requires a bit of technicalities, which we shall cover here.

Caution: Throughout this chapter, all vector spaces are over R, unless otherwise specified.

Definition 6.16 (Inner product)

Let V be a real vector space. An inner product is a function

⟨·, ·⟩ : V × V → R

which satisfies the following properties:

• symmetry: ⟨v,w⟩ = ⟨w,v⟩;

• billinearity: ⟨v1+v2,w⟩ = ⟨v1,w⟩+ ⟨v2,w⟩ and ⟨λv,w⟩ = λ⟨v,w⟩ and similarly in the second argument;

• positive-definite: ⟨v,v⟩ ≥ 0 for any v, and equality holds only if v = 0V .

As we have seen before, billinearity simply means that ⟨·, ·⟩ is linear in both arguments.

Example 6.17 (Rn)

As you might already know, one can define an inner product on Rn as the dot product. Let ei be the usual
basis, then we let

⟨α1e1 + · · ·+ αnen, β1e1 + · · ·+ βnen⟩ := α1β1 + · · ·+ αnβn.

It is easy to see that this is indeed symmetric and billinear. To see it is positive definite, note that if ai = bi
then the dot product is a21 + · · ·+ a2n, which is exactly zero when all ai are zero.

Remark. You might wonder: why do we limit ourselves to R? This is because inner products only exist in some

spaces, namely R- or C-vector spaces. We didn’t include the definition of complex inner products since (i) it is not

relavant to later discussions and (ii) it is quite different from real inner products.

With an inner product, we can now consider “length” of vectors and “distances”:

Definition 6.18 (Norm)

Let V be a real vector space with an inner product. The norm of v ∈ V is defined by

||v|| =
√
⟨v,v⟩

Note that this only makes sense since the inner product is assumed to be positive-definite.
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We now have this super famous result, which will become a stepping stone for later:

Lemma 6.19 (Cauchy-Schwarz)

Let V be a real vector space with an inner product. For any v,w ∈ V , we have

|⟨v,w⟩| ≤ ||v|| ||w||

with equality if and only if v and w are linearly dependent.

Proof. The theorem is immediate if ||v|| = 0, so henceforth we assume v ̸= 0V .

The key step is to consider the equality case: we will use the inequality ⟨λv − w, λv − w⟩ ≥ 0. Deferring the

choice of λ for later, we compute

0 ≤ ⟨λv −w, λv −w⟩
= ⟨λv, λv⟩ − ⟨λv,w⟩ − ⟨λw, λv⟩+ ⟨w,w⟩
= λ2⟨v,v⟩ − λ⟨v,w⟩ − λ⟨w,v⟩+ ⟨w,w⟩

2λ⟨v,w⟩ ≤ λ2||v||2 + ||w||2.

At this point, a good choice of λ is

λ =
⟨v,w⟩
||v||2

,

since then

2
⟨v,w⟩
||v||2

⟨v,w⟩ ≤ ⟨v,w⟩
2

||v||4
||v||2 + ||w||2 =⇒ ⟨v,w⟩2 ≤ ||v||2 ||w||2,

as desired. The equality holds if and only if w = λv from the start of the inequality.

Remark. The choice of λ might seem arbitrary, but it is in fact natural: we can view the inequality above as a

quadratic in λ, then this particular choice of λ minimises the quadratic.

We can also show:

Theorem 6.20 (Triangle inequality)

Let V be a real vector space with an inner product. For any v,w ∈ V , we have

||v||+ ||w|| ≥ ||v +w||

Proof. Omitted; proved by squaring both sides applying Cauchy-Schwarz.

Just as the case in Rn, a natural notion we would be interested in is orthogonality:

Definition 6.21 (Orthogonal)

Two non-zero vectors v,w in a real vector space with an inner product are orthogonal if ⟨v,w⟩ = 0.

More generally, a set of non-zero vectors {v1, . . . ,vn} form an orthogonal set if they are pairwise orthogonal,
and in addition if each vi have norm 1 then they form an orthonormal set.

As we expect from our geometric intuition in Rn, this implies independence:

Lemma 6.22

Orthogonal sets are linearly independent.

Proof. If
∑

αivi = 0 where αi ∈ R, then

0V =
〈
v1,
∑

αivi

〉
= α1||v1||2,

and so a1 = 0 since v1 is non-zero. Similarly ai are all zero.
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It turns out that any vector space with an inner product has a basis that is also orthonormal:

Theorem 6.23 (Gram-Schmidt)

Let v1, . . . ,vr be linearly independent vectors in V . Let proju(v) =
⟨v,u⟩
⟨u,u⟩u, and recursively define

w1 = v1

w2 = v2 − projw1
(v2)

w3 = v3 − projw1
(v3)− projw2

(v3)

...

wr = vr − projw1
(vr)− · · · − projwr−1

(vr).

Then the set of vectors {w1, . . . ,wr} are an orthogonal set of vectors, and for 1 ≤ i ≤ r we have Span(v1, . . . ,vi) =
Span(w1, . . . ,wi). In particular, if vi form a basis, then wi/||wi|| form an orthonormal basis.

Notice that if we choose V = Rn and the dot product as the inner product, then proju(v) is the projection of v

onto u. Hence the picture (for n = 2) is:

v1
v2

w2

projw1
(v2)

so you can see intuitively that wi will indeed be orthogonal.

Proof. The idea is induction on i that wi ̸= 0, Span(v1, . . . ,vi) = Span(w1, . . . ,wi) and ⟨wk,wi⟩ for all k < i. The

base case is trivial for all three of these statements. We now assume that all three statements are true for 1, . . . , i−1.

• If wi = 0, then vi ∈ Span(w1, . . . ,wi−1) = Span(v1, . . . ,vi−1) by definition of wi and induction hypothesis.

Contradiction to the linear independence of vi’s.

• Span(v1, . . . ,vi) = Span(w1, . . . ,wi) comes directly from the definition of wi and induction hypothesis.

• Pick any k < i, and we want to show ⟨wk,wi⟩ = 0. We have

⟨wk,wi⟩ = ⟨wk,vi⟩ −
i−1∑
j=1

⟨wk,projwj
(vi)⟩

= ⟨wk,vi⟩ −
i−1∑
j=1

〈
wk,

⟨vi,wj⟩
⟨wj ,wj⟩

wj

〉

= ⟨wk,vi⟩ −
i−1∑
j=1

⟨vi,wj⟩
⟨wj ,wj⟩

⟨wk,wj⟩

but by induction hypothesis, since j, k < i, if j ̸= k then ⟨wk,wj⟩ = 0. Hence this simplifies to

⟨wk,wi⟩ = ⟨wk,vi⟩ −
⟨vi,wk⟩
⟨wk,wk⟩

⟨wk,wk⟩ = 0,

as desired.

Hence, we can generally assume our bases are orthonormal.
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Example 6.24

Let V be a finite-dimensional real vector space with an inner product, and consider any orthonormal basis
e1, . . . , en. Then we have

⟨α1e1 + · · ·+ αnen, β1e1 + · · ·+ βnen⟩ =
n∑

i,j=1

αiβj⟨ei, ej⟩ =
n∑

i=1

αiβi

since {ei} are orthonormal. So you can conclude that the dot product is the “only” inner product, if we WLOG
assume that every basis of Rn is orthonormal.

Note that the word orthogonal has been shared with matrices:

Definition 6.25

A matrix A ∈Mn(R) is orthogonal if ATA = In.

and they are indeed related; we have that a matrix A is orthogonal if and only if its columns form an orthonormal

set in Rn. Indeed, the ij-th entry of ATA is the dot product of columns i and j of A.

Moreover, as a corollary to the Gram-Schmidt process, we have

Corollary 6.26

Let V be a real vector space with an inner product, and u ∈ V be a unit vector (i.e. with norm 1). Then there
is an orthogonal matrix with its first column as u.

Proof. Extend u to a basis, and apply Gram-Schmidt to obtain an orthonormal basis u,u2, . . . ,un. Note that the

first vector is unchanged by the process. We can then take the matrix having these vectors as its columns.

This marks the end of our technical requirements to proceed.

6.4 Real symmetric matrices

In this section, we will cover the big result in diagonalisation: if a matrix A ∈ Mn(R) is symmetric, then it

is diagonalisable. This is sometimes called the spectral theorem. In fact, the result is even better: there is an

orthonormal basis of Rn consisting of eigenvectors of A.

Remark. Throughout this chapter, to simplify calculations, we will only focus on the real vector space Rn with the

dot product as the inner product.

The key property about a symmetric matrix which makes the proof works is how it iteracts with the inner product:

Lemma 6.27 (Symmetric matrices are self-adjoint)

If A ∈Mn(R) is symmetric and u,v ∈ Rn, then

⟨Au,v⟩ = ⟨u, Av⟩.

The proof is simple: just notice that ⟨u,v⟩ = uTv. The following is the first lemma we need:

Lemma 6.28 (Real symmetric matrices have real eigenvalues)

Suppose A ∈Mn(R) is symmetric and λ ∈ C is a root of χA(x). Then λ ∈ R.

Proof. We may regard A as a matrix in Mn(C), so λ is an eigenvalue of A, and there exists non-zero v ∈ Cn such

that Av = λv. Write v = (v1, . . . , vn)
T and let v = (v1, . . . , vn)

T . Then vTAv = vTλv = λvTv.

But on the other hand, notice that A has real entries, so A = AT . Thus vTAv = (Av)Tv = λvTv. Since v ̸= 0,

we have vTv =
∑
|vi|2 ̸= 0, so λ = λ, i.e. λ ∈ R.
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We can also quickly deduce that eigenvectors of distinct eigenvalues are orthogonal:

Lemma 6.29

Suppose A ∈ Mn(R) is symmetric and λ, µ ∈ R are distinct eigenvalues of A with corresponding eigenvectors
u,v ∈ Rn. Then ⟨u,v⟩ = 0.

Proof. We have λ⟨u,v⟩ = ⟨Au,v⟩ = ⟨u, Av⟩ = µ⟨u,v⟩. As λ ̸= µ, ⟨u,v⟩ = 0.

Now comes the advertised theorem. We will show that we can pick an orthonormal basis consisting of eigenvectors

of A, which implies that A is diagonalisable.

Theorem 6.30 (Spectral theorem)

Suppose A ∈ Mn(R) is symmetric. Then there exists an orthonormal matrix P ∈ Mn(R) with P−1AP a
diagonal matrix.

Proof. The proof is by induction on n and the base case n = 1 is trivial. Suppose the result is true for n− 1.

Notice that χA(x) has at least one root λ1 ∈ C, by Fundamental theorem of algebra. But then by Lemma 6.28,

we must have λ1 ∈ R, so there is an eigenvalue of A. Let v1 be a corresponding eigenvector, and WLOG assume

||v1|| = 1. Then there is an orthogonal matrix P1 ∈ Mn(R) with first column v1, by Corollary 6.26. Write the

columns as v1, . . . ,vn. Then P−1
1 = PT

1 and

P−1
1 AP1 =


vT
1

vT
2
...
vT
n

(Av1 Av2 · · · Avn

)
=


vT
1

vT
2
...
vT
n

(λ1v1 Av2 · · · Avn

)

=


λ1 vT

1 Av2 · · · vT
1 Avn

0
... A′

0


where A′ ∈Mn−1(R). But notice that P−1

1 AP1 = PT
1 AP1, which is symmetric. So

P−1
1 AP1 =


λ1 0 · · · 0
0
... A′

0


and A′ is symmetric. By induction hypothesis, there is an orthogonal P ′ ∈Mn−1(R) with (P ′)−1A′P ′ diagonal. Let

P2 :=


1 0 · · · 0
0
... P ′

0

 ,

then P2 is orthogonal since P ′ is orthogonal. We also have

P−1
2 (P−1

1 AP1)P2 =


λ1 0 · · · 0
0
... (P ′)−1A′P ′

0


which is diagonal since (P ′−1)A′P ′ is diagonal. Then choosing P = P1P2 yields the desired result.
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We end the section by giving an explicit computation:

Example 6.31

Consider the 3× 3 matrix

A =

 1 −1 −1
−1 1 −1
−1 −1 1


so that A is symmetric. Let’s try to find an orthogonal matrix P such that P−1AP is diagonal. We firstly have

χA(x) = det

x− 1 1 1
1 x− 1 1
1 1 x− 1

 = (x+ 1)(x− 2)2

so the eigenvalues are −1 and 3. Although there are not 3 distinct eigenvalues, we still know it is diagonalisable
since A is real symmetric. In the usual way, we find

• E−1 = Span

1
1
1

, so an orthonormal basis for this is
1√
3

1
1
1

.

• E2 =
{
(x, y, z)T : x+ y + z = 0

}
, so a basis for this is (1,−1, 0)T and (0, 1,−1)T . To make this orthonor-

mal, we apply Gram-Schmidt and we have

w1 =
1√
2

 1
−1
0

 and w2 =
1√
6

 1
1
−2

 .

Finally, we can put these basis vectors in the columns of P and obtain

P =
1√
6

√2 √
3 1√

2 −
√
3 1√

2 0 −2

 .

In particular, another advantage of diagonalising A with an orthogonal matrix is that we don’t have to go through

the trouble of finding P−1; it is just the transpose of P !

Remark. One could rewrite the whole section to using the language of linear maps. But that would require a

linear-map version of “transpose”, which we haven’t covered yet. There is also a more general version of spectral

theorem over C-vector spaces with an inner product.

6.5 The Jordan form and multiplicities ⋆

Of course, maps with diagonal representation is one of the best situation we can get, as seen previously. We have

also seen that a large class of maps are diagonal under a suitable basis – but still, not every map is diagonalisable.

In this section, we will generalise the notion of diagonalisable, in hope that matrices with a looser condition can

be represented by something not too hard to understand as well.

Definition 6.32

A Jordan block is an n× n matrix of the following shape:
λ 1 0 · · · 0
0 λ 1 · · · 0
0 0 λ · · · 0
...

...
...

. . .
...

0 0 0 0 λ

 .
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In other words, a Jordan block has λ on the diagonal, and 1 above it. We allow n = 1, so
(
λ
)
is a Jordan block.

Before we dive into the technicalities, let’s state the main theorem:

Theorem 6.33 (Jordan canonical form)

Let T : V → V be a linear map of finite-dimensional vector spaces over an algebraically closed field F . Then
we can choose a basis B of V such that [T ]B is “block-diagonal” with each block being a Jordan block. Such a
matrix is said to be in Jordan form, and is unique up to rearranging the order of the blocks.

As an example, this means that the matrix should look something like

λ1 1
0 λ1

λ2

λ3 1 0
0 λ3 1
0 0 λ3

. . .

λm 1
0 λm


Notice that diagonal matrices are the special case when each block is 1× 1.

Motivation

What does this mean? This mean that all matrices (with entries in C, for instance) are Jordan-block-
diagonalisable! This is good news since

• Suppose we have a Jordan form of T , with Jordan blocks J1, . . . , Jm. Then any power of the map is still
quite simple, it is just

[Tn]B =


Jn
1 0 · · · 0
0 Jn

2 · · · 0
...

...
. . .

...

0 0
... Jn

m

 .

• But on the other hand, powers of a Jordan block is not hard to compute too, as we will see later.

So we essentially can compute powers of any map over C.

Example 6.34 (Concrete example of Jordan form)

We can still “read off” how T acts on the eigenvectors, given a Jordan form. For instance, take

[T ]B =


5 0 0 0 0 0
0 2 1 0 0 0
0 0 2 0 0 0
0 0 0 7 0 0
0 0 0 0 3 0
0 0 0 0 0 3


under a certain basis B = {v1, . . . ,v6}. Then we can compute all the eigenvectors and eigenvalues:

T (v1) = 5v1

T (v2) = 2v2

T (v4) = 7v4

T (λv5 + µv6) = 3(λv5 + µv6).
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Alright, let’s dive into the proof of the theorem now. The most important definition for that is:

Definition 6.35

A map T : V → V is nilpotent if Tm is the zero map for some integer m. (Here Tm means T applied m times.)

What’s an example of a nilpotent map?

Example 6.36 (The “descending staircase”)

Let V = F 3 have basis e1, e2, e3. Then the map T which sends

e3 7→ e2 7→ e1 7→ 0

is nilpotent, since T (e1) = T 2(e2) = T 3(e3) = 0, so T 3(v) = 0 for all v ∈ V .

The above 3× 3 descending staircase has matrix representation

[T ]B =

0 1 0
0 0 1
0 0 0

 .

Notice that this is a Jordan block. We can also see that T above has 0 as its only eigenvalue.

As another example, we can have multiple such staircases:

Example 6.37 (Double staircase)

Let V = F 5 have basis e1, . . . , e5. Then the map S which sends

e3 7→ e2 7→ e1 7→ 0 and e5 7→ e4 7→ 0

is nilpotent.

Notice that S this time has Jordan form:

[S]B =


0 1 0
0 0 1
0 0 0

0 1
0 0

 .

You can see this is not really that different from the previous example; it is just the same idea repeated multiple

times. In fact, we now claim that all nilpotent maps have essentially that form:

Theorem 6.38 (Nilpotent Jordan)

Let V be a finite-dimensional F -vector space, where F is algebraically closed, and T : V → V be a nilpotent
map. Then V =

⊕m
i=1 Vi where each Vi has a basis of the form vi, T (vi), . . . , T

dimVi−1(vi) for some vi ∈ Vi.

This looks horribly daunting, but we can understand the statement better by looking at an example:

Example 6.39

Using the double staircase example from above, we notice that

V = Span(e1, e2, e3)⊕ Span(e4, e5) = Span(e3, T (e3), T (T (e3)))⊕ Span(e5, T (e5))

since of course each element in V can be uniquely written as a sum of a linear combination of e1, e2, e3 and a
linear combination of e4, e5. In particular, by choosing the basis B = {S(S(e3)), S(e3), e3, S(e5), e5}, we have
the matrix representation as above.
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So the theorem is merely stating that any nilpotent maps gives such a basis, i.e. we might choose

B =
{
T dimV1−1(v1), . . . , T (v1),v1,

T dimV2−1(v2), . . . , T (v2),v2,

. . . ,

T dimVm−1(vm), . . . , T (vm),vm

}
to be a basis of V , so that the matrix representation will become m blocks of staircases. In other words,

! Keypoint

Every nilpotent map has a matrix representation of independent staircases.

Proof. We induct on dimV . The case when dimV = 1 is trivial. Assume dimV ≥ 1, and let W = imT . Since

T is nilpotent, W ̸= V . Moreover, if W = {0} (i.e. T is the zero map) then we are already done. So assume

{0} ⊂W ⊂ V .

Hence dimW < dimV . By the induction hypothesis, there is a basis of W in the form

B′ =
{
w1, T (w1), T (T (w1)), . . .

w2, T (w2), T (T (w2)), . . .

. . . ,

wk, T (wk), T (T (wk)), . . .
}

for some wi ∈W . But W = imT , so we can rewrite the basis as

B′ =
{
T (v1), T (T (v1)), T (T (T (v1))), . . .

T (v2), T (T (v2)), T (T (T (v2))), . . .

. . . ,

T (vk), T (T (vk)), T (T (T (vk))), . . .
}
.

Now note that there are exactly k elements of B′ which are in kerT (namely the last element of each of the

k staircases). We can thus complete it to a basis of kerT by adding some vectors vk+1, . . . ,vm ∈ kerT (where

m = dimkerT ). Now we consider

B =
{
v1, T (v1), T (T (v1)), T (T (T (v1))), . . .

v2, T (v2), T (T (v2)), T (T (T (v2))), . . .

. . . ,

vk, T (vk), T (T (vk)), T (T (T (vk))), . . .

vk+1,vk+2, . . . ,vm

}
.

Then there are exactly k + dimW + (dimkerT − k) = dimkerT + dim imT = dimV elements, by rank-nullity

theorem. Moreover, B is linearly independent since if there is a linear dependence, then via taking T ,

• the staircases {vi, T (vi), T (T (vi)), T (T (T (vi))), . . .} gets sent to the corresponding staircase in B′,

• the elements {vk+1, . . . ,vm} is sent to 0 since they are in kerT .

Hence this would result in a linear dependence of elements in B′, contradiction.

Therefore B is a basis of the desired form (note that vk+1, . . . ,vm form a staircase by themselves, since they are

sent to 0 by applying T one time).
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Motivation

Incredibly, we are almost done! If we take the double staircase again, we can compute

[S + λ · id]B = [S]B + λI5 =


λ 1 0
0 λ 1
0 0 λ

λ 1
0 λ


which is just two λ Jordan blocks! This gives us a plan to proceed: we need to break V into a bunch of subspaces
such that T −λ · id is nilpotent over each subspace. Then nilpotent Jordan will give us the desired Jordan block.

Hence, we will now try to reduce to the nilpotent case. We first need a lemma:

Lemma 6.40

Let V be a finite-dimensional vector space, and T : V → V be a linear map. Denote Tn as T applied n times,
then there exists an integer N such that

V = kerTN ⊕ imTN .

Proof. Consider

{0} ⊂ kerT ⊆ kerT 2 ⊆ kerT 3 ⊆ · · ·
V ⊃ imT ⊇ imT 2 ⊇ imT 3 ⊇ · · · .

Notice that each ⊂ means an increase of dimension (and similarly ⊃ is a decrease of dimension). Since V is

finite-dimensional, the two above chains must eventually stabalise, i.e. for some N we have

kerTN = kerTN+1 = · · · and imTN = imTN+1 = · · · .

When this happens, we have kerTN ∩ imTN = {0}, for if w ∈ kerTN ∩ imTN then w = TN (v) for some v, but

w = TN (v) ∈ kerTN =⇒ T 2N (v) = 0 =⇒ v ∈ kerT 2N = kerTN

so w = TN (v) = 0.

On the other hand, by rank-nullity theorem, we also have dimkerTN + dim imTN = dimV . But then

dim(kerTN + imTN ) = dimkerTN + dim imTN − dim(kerTN ∩ imTN ) = dimV

so kerTN + imTN = V too. This gives V = kerTN ⊕ imTN as desired.

Remark. One might notice that we didn’t actually prove before that U + V is a direct sum if U ∩ V = {0}. But

this is quite simple: if u1 + v1 = u2 + v2 in U + V , then

u1 − u2 = v2 − v1

but the left side is in U and the right side is in V . So they are both equal to {0}, i.e. u1 = u2 and v1+v2 as needed.

Now we just need a few more results to get to the end. Bear with me now:

Definition 6.41 (Invariant subspaces)

Let T : V → V . A subspace W ⊆ V is called T -invariant if T (w) ∈W for any w ∈W . In this way, T can be
thought of as a map W →W .
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Definition 6.42 (Indecomposable)

A map T : V → V is called indecomposable if it is impossible to write V = W1⊕W2 where both W1 and W2

are non-trivial T -invariant subspaces.

In this way, the Jordan form is a decomposition of V into invariant subspaces:

Example 6.43

Suppose a map T has Jordan form

[T ]B =


3 1 0
0 3 1
0 0 3

2 1
0 2


with some basis B = {e1, . . . , e5}. Then Span(e1, e2, e3) is T -invariant, since

T (e1) = 3e1, T (e2) = e1 + 3e2, T (e3) = e2 + 3e3

and similarly Span(e4, e5) is T -invariant. Hence T is decomposable.

As you might expect, we can break a space apart into “indecomposable” parts.

Proposition 6.44 (Invariant subspace decomposition)

Let V be a finite-dimensional vector space. Given any map T : V → V , we can write

V = V1 ⊕ V2 ⊕ · · · ⊕ Vm

where each Vi is T -invariant, and for any i the restriction map T : Vi → Vi is indecomposable.

Proof. Same as the proof that every integer is the product of primes: if V is not decomposable, we are done.

Otherwise, by definition write V = W1 ⊕W2 and repeat on each of W1 and W2. By dimension reasons this must

terminate.

With this, we can finally prove the big theorem. We will show that given such a decomposition, there is a basis

B of V such that [T ]B has Jordan blocks on the diagonal, each corresponding to a T -invariant subspace Vi.

Proof of Theorem 6.33. Consider a decomposition as above, so that the restriction T : V1 → V1 is an indecomposable

map. Then T has an eigenvalue λ1 since F is algebraically closed, so let S = T − λ1 · id, hence kerS ̸= {0}.

Now we claim that V1 is also S-invariant. Indeed, given v ∈ V1,

S(v) = T (v)− λ1 · id(v) = T (v)− λ1v ∈ V1.

So it makes sense to consider the restriction S : V1 → V1. In fact, T -invariant and S-invariant is equivalent by the

exact same argument. This also implies that S is indecomposable since T is assumed to be indecomposable.

By Lemma 6.40, we then have

V1 = kerSN ⊕ imSN

for some N . It is easy to see that kerSN and imSN are themselves S-invariant subspaces. But S is indecomposable,

so this can only happen if imSN = {0} and kerSN = V1 (since kerSN contains our eigenvector).

Hence S is nilpotent, so it can be written as a collection of staircases S =
⊕

Si by nilpotent Jordan. But since

S is indecomposable, there is only one staircase. Hence T has a Jordan block on the columns corresponding to the

basis of V1 and similarly for Vi, as desired.

68



Bendit Chan 6.5 The Jordan form and multiplicities ⋆

That was a lot to take in, so let’s do an explicit computation:

Example 6.45

Consider T : F 3 → F 3 with basis B of F such that T has representation

[T ]B =

3 −2 0
1 0 0
1 0 1

 .

Let’s try to find the Jordan form of this matrix and the corresponding change of basis matrix. Firstly, we have

χT (x) = det

x− 3 2 0
−1 x 0
−1 0 x− 1

 = x(x− 1)(x− 3) + 2(x− 1) = (x− 1)2(x− 2).

So the eigenvalues are 1 and 2.

We need the eigenspaces of T :

• If λ = 1, then

2 −2 0
1 −1 0
1 0 0

v = 0, so v ∈ Span

0
0
1

.

• Similarly, if λ = 2, then

1 −2 0
1 −2 0
1 0 −1

v = 0, so v ∈ Span

2
1
2

.

In particular notice that this is not diagonalisable. From here, we already know that under some basis, T has
the Jordan form 1 1 0

0 1 0
0 0 2


since (i) Jordan forms are upper-triangular, i.e. the eigenvalues are its diagonal entries (and eigenvalues are
unchanged under a change of basis); and (ii) T is not diagonalisable.

We now want to compute a basis that transforms T to this. Suppose that basis is {v1,v2,v3}. Then

T (v1) = v1, T (v2) = v1 + v2, T (v3) = 2v3

or equivalently
(T − id)(v1) = 0, (T − id)(v2) = v1, (T − 2 id)(v3) = 0

Clearly we can choose v3 as a 2-eigenvector. For v2 and v1, we want them to form a staircase v2 7→ v1 7→ 0.
So we compute

[(T − id)2]B =

2 −2 0
1 −1 0
1 0 0

2

=

2 −2 0
1 −1 0
2 −2 0


which has kernel Span

{
(0, 0, 1)T , (1, 1, 0)T

}
. We need to pick v2 out of ker(T − id), i.e. not a 1-eigenvector, so

there is only one possibility:

v1 =

0
0
1

 , v2 =

1
1
0

 , v3 =

2
1
2

 .

Putting them together, we finally have

P =

0 1 2
0 1 1
1 0 2

 .

Interested reader might try to work out the formula for the powers of Jordan blocks.
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As you can probably see, although this section proved the existence of such a form for any linear transformation,

the computation is still extremely bothersome. In fact, the calculation of the change of basis matrix for larger

matrices might even require a computation of a large power of (A − I)n; but that is inevitable as a consequence of

this more general notion.

To end this section, we shall introduce a final convenient notation:

Definition 6.46

Let T : V → V be a linear map and λ a scalar.

• The geometric multiplicity of λ is the dimension dimEλ of the λ-eigenspace.

• Define the generalised eigenspace Eλ to be the subspace of V for which (T − λ · id)n(v) = 0 for some
n ≥ 1. The algebraic multiplicity of λ is the dimension dimEλ.

Let’s understand this via an example:

Motivation

Consider the following matrix in Jordan form:

[T ]B =


7 1
0 7

9
7 1 0
0 7 1
0 0 7

 .

We focus on the eigenvalue 7, which appears multiiple times, so it is certainly “repeated”. However, there are
two different senses in which you could say it is repeated:

• Algebraic: You could say it is repeated five times, since it appears five times on the diagonal.

• Geometric: You could say it really only appears twice since there are only two eigenvectors with eigenvalue
7, namely e1 and e4.

Indeed, the vector e2 for instance has T (e2) = 7e2 + e1, so it is not really an eigenvector; but applying T − 7 · id
two times on e1 we do get zero. Hence e1 ∈ E7.

But in fact with our understanding of eigenvalues and characteristic polynomial, we can also conclude that the

algebraic multiplicity is the amount of λ appears as a root of χT (x).

With our understanding of Jordan form, we can also say:

Proposition 6.47

Let T : V → V be a linear map of finite-dimensional vector spaces, written in Jordan form. Let λ ∈ F , then

• The geometric multiplicity of λ is the number of Jordan blocks with eigenvalue λ.

• The algebraic multiplicity of λ is the sum of the dimensions of the Jordan blocks with eigenvalue λ.

By this observation, we also conclude the following:

Proposition 6.48

T is diagonalisable if and only if for any λ, its geometric and algebraic multiplicity coincide.

And this marks the end of our discussion towards eigenvalues and eigenvectors.
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