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Bendit Chan 1 Completion of Valued Field

1 Completion of Valued Field

In this section, we will start our study on fields equipped with absolute values, and then move on to considering

non-archimedean ones. We then pass on to constructing the metric space completion of valued field, which is a valued

field as well. At last we will present two important examples that serves as prototypes in later sections.

1.1 Absolute Values

Definition 1.1 (Absolute values)

Let K be a field, then an absolute value on K is a function

| · | : K → R

satisfying the following properties,

(K1) We have |x| ≥ 0 for all x ∈ K, with equality holds if and only if |x| = 0;

(K2) We have |xy| = |x||y| for all x, y ∈ K;

(K3) We have the triangle inequality |x+ y| ≤ |x|+ |y| for all x, y ∈ K.

Definition 1.2 (Non-Archimedean, Valued fields)

An absolute value is called non-archimedean if the strong triangle inequality holds

|x+ y| ≤ max{|x|, |y|}.

If | · | defines an non-archimedean absolute value on K, then the pair (K, | · |) is called a valued field.

Remark. There are a few arithmetic properties one can notice. Let x, y ∈ K.

1. If xn = 1 then |x| = 1. In particular, finite fields have only the trivial absolute value | · |0, defined as

|x|0 =

{
0 for x = 0

1 for x 6= 0

2. We have |1| = |−1| = 1, so |x| = |−x| for all x ∈ K.

3. If K is a valued field and |x| < |y|. Then |x+y| ≤ max{|x|, |y|} = |y| = |x+y−x| ≤ max{|x|, |x+y|} = |x+y|.
Hence |x+ y| = |y| (i.e. every triangle is isosceles).

We shall only put our attention on non-archimedean absolute values. The name of it is emerged from the following

lemma. Recall there exist an unique injective homomphism from Z→ R for any ring R.
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Lemma 1.3

Let K be a field with an absolute value | · | on K, then | · | is non-archimedean iff the set {|n| : n ∈ Z} is bounded.

Proof. (⇒) Since |n| = |−n|, we can assume n ≥ 1. Then |n| = |1 + 1 + . . .+ 1| ≤ |1| = 1.

(⇐) Suppose |n| ≤ B for all n ∈ Z. Let x, y ∈ Z, then

|x+ y|m =

∣∣∣∣∣
m∑
i=0

(
m

i

)
xiym−i

∣∣∣∣∣ ≤ (m+ 1)B max{|x|, |y|}m.

Taking roots both sides yields

|x+ y| ≤ (B(m+ 1))1/m max{|x|, |y|}.

Suppose there exist x, y such that the inequality is not true. Notice that the factor (B(m + 1))1/m tends to 1

when m tends to infinity. Thus we can choose a sufficiently large m such that we derive a contradiction. Hence | · |
is indeed non-archimedean.

Remark. Lemma 1.3 shows that if char(K) > 0, then all absolute value on K

are non-archimedean.

Another distinctive difference between archimedean absolute value and non-

archimedean absolute value is that the valuation ring only make sense when it

is defined in a valued field (i.e. a field with a non-archimedean absolute value),

which gives a rich algebraic structure on K. We first need a definition on general

valuation rings:

Note

The characteristic n of a
field F is the smallest number
n such that

1 + 1 + . . .+ 1︸ ︷︷ ︸
n times

= 0.

If such n does not exist, we say
char(K) = 0.

Definition 1.4 (Valuation Ring)

Suppose B is an integral domain and K = Frac(B). Then B is called a valuation ring of K if for any element
x ∈ K×, we have x ∈ B or x−1 ∈ B.

Proposition 1.5

Given a valued field K, the valuation ring (abuse of notation)

OK := {x ∈ K : |x| ≤ 1}

is a valuation subring of K. The units in OK are exactly O×K = {x ∈ K : |x| = 1}, and the remaining elements
form a maximal ideal, i.e.

mK = {x ∈ K : |x| < 1}.

The quotient kK := OK/mK is then defined as the residue field.
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Proof. To see that why K = Frac(OK), use Atiyah Corollary 3.2. The rest to prove that OK is indeed a valuation

ring of K is trivial.

Now if x ∈ OK satisfies |x| = 1, then x−1 ∈ K. But |x−1| = 1 as well, so x−1 ∈ OK , i.e. x is a unit. This proves

the second part. The third part just comes from Atiyah Proposition 1.6.

Notice that if | · | is archimedean, then OK is not even a subring of K (take R as an example). We quote Atiyah

Proposition 5.8 to give some properties of valuation rings:

Proposition 1.6

Let B be a valuation ring of K, then

1. B is a local ring.

2. If B′ is a ring such that B ⊆ B′ ⊆ K, then B′ is a valuation ring of K.

3. B is integrally closed in K.

Note

An integral domain B is in-
tegrally closed in K if it is
equal to its integral closure, i.e.
the set of all integral elements

{x ∈ K : ∃n ≥ 1, bi ∈ B,

xn + b1x
n−1 + . . .+ bn = 0}.

Proof. 1. Let m be the set of non-units of B, so x ∈ m⇔ either x = 0 or x−1 6∈ B. If a ∈ B and x ∈ m we have

ax ∈ m for if otherwise (ax)−1 ∈ B ⇒ x−1 = a · (ax)−1 ∈ B. Next let x, y be non-zero elements in m. Then

either xy−1 or x−1y ∈ B. If xy−1 ∈ B then x+ y = (1 + xy−1)y ∈ Bm ⊆ m. Similarly for x−1y ∈ B. Hence m

is an ideal and therefore B is a local ring.

2. It is clear from the definition.

3. Let x ∈ K be integral over B, then we have

xn + b1x
n−1 + · · ·+ bn−1x+ bn = 0

with bi ∈ B. If x ∈ B then we are done. If x−1 ∈ B then we have x = −(b1 + b2x
−1 + · · ·+ bnx

1−n) ∈ B.

1.2 Completion

Now we proceed to the construction of completion of K with respect to the absolute value | · |. Notice that this

construction works for both archimedean absolute value and non-archimedean absolute value. Recall that a field K

is complete if every Cauchy sequence in K has a limit in K.

Definition 1.7 (Cauchy Sequence)

Let K be a field with absolute value | · |. A sequence (an)n≥0 is Cauchy if for all ε > 0, there exists N ∈ N
such that ∀n,m > N , we have

|an − am| < ε.

Let R denote the set of all Cauchy sequences in K. Then R forms a ring with component-wise addition and

multiplication, i.e. (an) + (bn) := (an + bn) and (an)× (bn) := (anbn).

4



Bendit Chan 1 Completion of Valued Field

Furthermore, a Cauchy sequence (an) is called a nilsequence if

lim
n→∞

|an| = 0,

(this limit takes place in R) where the set of all nilsequence is denoted as N . We then have the following proposition:

Proposition 1.8

The set of all nilsequence N forms a maximal ideal of R, and the quotient ring K̂ := R/N is a field.

Proof. Let I be an ideal that properly contains N . We want to show that the constant sequence (1) ∈ I (so I = R).

Claim

Let (an) ∈ I \ N . Then it has at most finitely many zeros in the sequence.

Proof. Assume not, then by definition we have:

∀ε > 0,∃N ∈ N,∀n,m > N, |am − an| < ε,

but there are infinitely many zeros in the sequence. Thus we can choose an = 0 for any n > N , so the sequence

converges to zero, i.e. it is a nilsequence. Contradiction.

Now using the same notation, we can add a nilsequence to (an) such that it has no non-zero terms, and obtain

a new sequence (bn). But the term-by-term inversion
(

1
bn

)
is still a Cauchy sequence by basic analysis. Thus

(1) = (bn)
(

1
bn

)
∈ I as required.

Remark. For any element k ∈ K, notice that the constant sequence (k)n≥0 is Cauchy and thus induces an injective

ring homomorphism φ : K ↪−→ R given by

φ : k 7→ (k)n≥0.

Hence the ring R contains a copy of K.

At last, we will put an absolute value (induced by | · | on K̂).

Definition 1.9

Define the absolute valuea on K̂ as
|(an)|′ := lim

n→∞
|an|.

aAfterwards we will abuse the notation, writing | − | as | − |′ to represent the absolute value on K̂.

We have to manually check if this absolute value is well-defined and if it satisfies the three conditions:
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Claim

This is a well defined absolute value on K̂.

Proof. Suppose an ∼ bn in K̂, i.e. an − bn ∈ N . We have

lim
n→∞

|bn|+ lim
n→∞

|an − bn| ≥ lim
n→∞

|an|

and similarly,

lim
n→∞

|an|+ lim
n→∞

|bn − an| ≥ lim
n→∞

|bn|.

Since an − bn ∈ N , we must have |(an)|′ = |(bn)|′.

Claim

This defines an absolute value on K̂.

Proof. (K1) |(an)|′ = lim
n→∞

|an| = 0 if and only if an ∈ N .

(K2) |(an)|′|(bn)|′ = lim
n→∞

|an| lim
n→∞

|bn| = lim
n→∞

|an||bn| = lim
n→∞

|anbn| = |(anbn)|′.

(K3) |(an) + (bn)|′ = lim
n→∞

|an + bn| ≤ lim
n→∞

|an|+ |bn| = |(an)|′ + |(bn)|′.

We also note here that if | · | is non-archimedean, then

|(an) + (bn)|′ = lim
n→∞

|an + bn| ≤ lim
n→∞

max{|an|, |bn|} = max{|(an)|′, |(bn)|′}

as the max function is continuous. Therefore | · |′ is also non-archimedean.

Remark. Recall the natural homomorphism φ. For k ∈ K, we have |φ(k)|′ = |k|.

Now we will prove that the completion of K is indeed complete. We first state a lemma that K is dense in K̂:

Lemma 1.10

Let (an) ∈ K̂, then (an) can be approximated arbitrarily close by elements
of K.

Note

A set A is dense in B if B =
A ∪ L, where L is the set of
limit points of A.

Proof. Fix ε > 0. As (an) is Cauchy, there exist N such that |an − am| < ε for every n,m ≥ N . Then we have

|(an)− φ(aN )|′ = lim
n→∞

|an − aN | ≤ ε,

and so (an) converges to (aN ), i.e. K is dense K̂.
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Theorem 1.11

The field K̂ is complete.

Proof. Let (An) be a Cauchy sequence in K̂. Then by Lemma 1.10, for all integer n, there exist aN ∈ K such that

|An − φ(aN )|′ < 1

n
.

Claim

The sequence (an) is Cauchy, and thus gives an element a ∈ K̂.

Proof. We have

|am − an| = |φ(am)− φ(an)|′ ≤ |φ(am)−Am|′ + |Am −An|′ + |An − φ(an)| < 1

m
+

1

n
+ |Am −An|′

and therefore (an) is Cauchy since (An) is a Cauchy sequence.

To proceed, we further claim that An → a when n→∞. We have

|An − a|′ ≤ |An − φ(an)|′ + |φ(an)− a|′ < 1

n
+ |φ(an)− a|′.

When n → ∞, by construction of a we have that |φ(an)− a| is arbitary close to 0 by Lemma 1.10. This proves

the assertion.

Another feature of the completion is that it preserves the residue field:

Proposition 1.12

Let K̂ be the completion of the valued field K. Let ÔK and m̂K be the valuation ring and the maximal ideal
of K̂ respectively. Then clearly OK = ÔK ∩K and mK = m̂K ∩K. Hence there is a natural map

θ : OK/mK → ÔK/m̂K
a+ mK 7→ φ(a) + m̂K

which is an isomorphism.

Proof. It is clearly an injective field homomorphism. For surjectivity, if α ∈ ÔK , then by Lemma 1.10 there exist

a ∈ K such that |α− φ(a)| < 1. Then a ∈ OK and α− φ(a) ∈ m̂K . Hence θ(a) = α as required.
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1.3 Classification of Absolute Values

In the next two examples we will classify all absolute values on some particular fields. Thus it makes sense for us

to first define when are two absolute values considered as “same”.

Proposition 1.13

Let | · |1 and | · |2 be two non-trivial absolute value on a field K. Then the following are equivalent:

1. | · |1 and | · |2 induce the same topology;

2. |x|1 ≤ 1 if and only if |x|2 ≤ 1;

3. |x|2 = |x|c1 for some constant c > 0.

If these conditions holds then we say | · |1 and | · |2 are equivalent.

Proof. (1)⇒ (2). Suppose | · |1 and | · |2 induce the same topology, then any sequence that converges with respect to

one absolute value must also converge in the other. Consider the sequence (xn)n≥0, this converges to 0 with respect

to | · | if and only if |x| < 1. This gives (2).

(2)⇒ (3). Pick a ∈ K× with |a|1 < 1. Let x ∈ K× and m/n ∈ Q, we have

log |x|1
log |a|1

>
m

n
⇐⇒ n log |x|1 < m log |a|1

⇐⇒
∣∣∣ xn
am

∣∣∣
1
< 1

⇐⇒
∣∣∣ xn
am

∣∣∣
2
< 1

⇐⇒ log |x|2
log |a|2

>
m

n

Since m/n ∈ Q is arbitary, so
log |x|1
log |a|1

=
log |x|2
log |a|2

, then log |x|2 = c log |x|1 for some c > 0, as required.

(3)⇒ (1). We have

|x− a|1 < r ⇐⇒ |x− a|c2 < r ⇐⇒ |x− a|2 < r1/c,

so any open ball with respect to | · |1 is also open with respect to | · |2.

Example 1.14

Classify all non-trivial absolute values on Q.

Solution. We split into two cases, namely when the absolute value is archimedian and non-archimedian:

8
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Archimedian This first implies that there exist b ∈ Z>1 such that |b| > 1. We shall prove that | · | is equivalent

to the usual absolute value, denoted by | · |∞.

Let a ∈ Z. Write bn in base a, i.e. bn = cma
m + cm−1a

m−1 + . . . + c0 with 0 ≤ ci < a and

m ≤ n loga b. Let B = max{|ci| : 0 ≤ ci ≤ a}. Then

|bn| ≤ (m+ 1)Bmax{|a|m, 1} ⇒ |b| ≤ (B(m+ 1))1/n︸ ︷︷ ︸
→1 as n→∞

max{|a|loga b, 1}

⇒ |b| ≤ max{|a|loga b, 1}.

This implies that |a| > 1 and |b| ≤ |a|loga b. Swap the roles of a and b and we get |a| ≤ |b|logb a.

Combining the two results yields

λ :=
log |a|
log a

=
log |b|
log b

,

and so |a| = aλ for all a ∈ Z>1. Hence | · | is equivalent to | · |∞.

Non-archimedean This implies that |n| ≤ 1 for all n ∈ Z. As | · | is non-trivial, pick n ∈ Z such that n > 1 and

|n| < 1. Write n = pα1
1 pα2

2 . . . pαnn with pi primes. Notice that there exist pi such that |pi| < 1.

Claim

The prime pi such that |pi| < 1 is unique.

Proof. Suppose otherwise that |p| < 1 and |q| < 1 for distinct primes p and q. Write 1 = rp+ sq

for some r, s ∈ Z by Bezout’s identity. Then 1 = |rp + sq| ≤ max{|rp|, |sq|} ≤ max{|p|, |q|} < 1.

Contradiction.

Therefore |p| = α < 1 and for all other primes q, we must have |q| = 1. Let vp(n) to be the largest

power of p that divides n. Then we have

|n|p =

{
0 for n = 0

αvp(n) for n 6= 0.

This absolute value extends uniquely to Q by the rule |p/q| = |p|/|q|, or by extending the notion

vp to Q by settubg vp(a/b) = vp(a)− vp(b).

When α = p−1, this absolute value is called the p-adic absolute value on Q, denoted by | · |p.
Notice that other absolute values with different choices of α are equivalent to | · |p.

We note here that the valuation ring of Q is actually in the form of

Z(p) =
{a
b
∈ Q : gcd(a, b) = 1, p - b

}
.

This is actually the localization of Z at ideal (p) with the residue field Fp, the finite field with p elements. This is

not complete. Define the p-adic numbers Qp to be the completion of Q with respect to the p-adic absolute value,

with Zp as the p-adic integers which is the valuation ring of Qp.
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Example 1.15

Classify all non-trivial absolute values on Fq(T ).

Solution. Notice that in a finite field, any absolute value is trivial, hence it is non-archimedean. Consider a non-zero

polynomial f(T ) = a0 + a1T + · · ·+ adT
d (ad 6= 0). We shall split into two cases:

|T | > 1 For each 0 ≤ i ≤ d, since ai ∈ Fq, we must have |ai| = 0 or 1 and in particular, |ad| = 1. Then

|aiT i| < |adT d| as T > 1. Since “every triangle is isosceles”, we have |f(T )| = |adT d| = |T d| = |T |deg f .

Now let c = 1
|T | , and so we have |f(T )| = c−deg f . This defines an absolute value on Fq[T ] which extends

easily to Fq(T ). This absolute value will be denoted as | · |∞.

|T | ≤ 1 Let π(T ) be a non-constant polynomial with minimal degree such that |π(T )| < 1.

Claim

π(T ) is irreducible.

Proof. Suppose the contrary, then π(T ) = p(T )q(T ) with deg p,deg q < deg π. Therefore |p|, |q| ≥ 1 by

the minimality of the degree. But |π| = |p||q|, and so |π| ≥ 1. Contradiction.

WLOG we can assume that π(T ) is monic by scaling. Now consider f(T ) = π(T )kh(T ), with π - h. We

will show that |h(T )| = 1.

Indeed, write h(T ) = π(T )q(T ) + r(T ), by minimality of degree we have |r(T )| = 1 (since we already know

that for any polynomial, |f(T )| ≤ max(|aiTi|) ≤ 1), and |π(T )q(T )| ≤ c < 1. Hence again by “every

triangle is isosceles” we have |h| = 1, so |f(T )| = ck = c−vπ(f), where vπ(f) is the highest power of π

dividing f .

This defines an absolute value on Fq[T ] which extends easily to Fq(T ). We will denote this absolute value

as | · |π.

Similar to above, the valuation ring of Fq(T ) with respect to | · |π is the localization of Fq(T ) at ideal (π), with

residue field Fq.

For the case | · |∞, notice that ∣∣∣∣f(T )

g(T )

∣∣∣∣
∞

=

∣∣∣∣f(1/T )

g(1/T )

∣∣∣∣
1/T

= deg g − deg f.

This reduces to the case mentioned above. The completion of Fq(T ) with respect to this absolute value is Fq((T )),

with the valuation ring Fq[[T ]].
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2 Discrete Valuation

In this section, we will consider an equivalent formulation of non-archimedean absolute values, which is named

as valuations. We then further specialise into discrete valuations and introduce the notion of local fields, exploring

its fruitful properties.

2.1 Valuation Rings

Definition 2.1 (Valuation)

Let K be a field. A valuation on K is a function v : K× → R such that

1. For all x, y ∈ K×, we have v(xy) = v(x) + v(y);

2. For all x, y ∈ K×, we have v(x+ y) ≥ min{v(x), v(y)}.

The image v(K×) is a subgroup of (R,+), called the value group.

Notice that a valuation is just an alternative way to represent a non-archimedean absolute value. Fix 0 < c < 1.

Then if we have a valuation v, the function

|x| =

{
0 for x = 0

cv(x) for x 6= 0

determines a non-archimedean absolute value. Conversely, given an non-archimedean absolute value |x|, the function

v(x) = − logc |x| gives back the induced valuation.

Definition 2.2 (Discretely valued field)

If v(K×) ∼= Z, then we say that v is a discrete valuation (which is normalised if v(K×) = Z) and K is a
discretely valued field.

We also call π ∈ K uniformiser if v(π) generates the value group, so v(π) = 1 if v is normalised.

Recall from a modified version of Atiyah Chapter 6 in which we have the definition of Noetherian rings:

Definition 2.3

Let A be a ring, A is Noetherian if one of the following equivalent conditions holds:

1. Every ideal in A is finitely generated.

2. Every infinite ascending chain of ideals is stationary, i.e. there does not exist (I)i such that

I1 ⊂ I2 ⊂ I3 ⊂ · · ·

and each of the inclusions are strict.

11
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We then have the following lemma, linking the discrete valuation with Noetherian rings:

Lemma 2.4

Let K be a valued field with valuation v. The following are equivalent:

1. v is a discrete valuation.

2. OK is a principal ideal domain.

3. OK is a Noetherian ring.

4. mK is principal.

Note

Recall that the valuation ring
OK is the set

OK := {x ∈ K : |x| ≤ 1},

while the non-units form a
maximal ideal

mK = {x ∈ K : |x| < 1}.

Proof. (1) ⇒ (2). We shall show that v is an Euclidean function on OK . v(a) ≤ v(ab) is obvious. If ab−1 ∈ OK ,

we can write a = b · ab−1 + 0. Otherwise, we must have 0 > v(ab−1) = v(a) − v(b), so v(a) < v(b). Now notice

v(a) = v(b+ (a− b)) ≥ min(v(b), v(a− b)) = v(a− b). Write x = 1 ·y+ (x−y) and we are done. (2)⇒ (3) is obvious.

(3) ⇒ (4). Write mK = x1OK + x2OK + · · · + xnOK . WLOG we have |x1| ≥ |x2| ≥ · · · ≥ |xn|. Then consider

xOK ⊆ yOK ⇔ x
y ∈ OK ⇔ |x| ≤ |y|. Hence mK = x1OK .

(4)⇒ (1). Let mK = πOK . Then for any x ∈ K× with v(x) > 0, we have x ∈ mK so v(x) is generated by v(π).

This leads to the following definition that characterize OK :

Definition 2.5

A discrete valuation ring (DVR) is a principal ideal domain with exactly one non-zero prime ideal (which is
also maximal).

It is then clear that if v is discrete, then OK is a discrete valuation ring. The converse also holds:

Proposition 2.6

If R is a discrete valuation ring, then there exists a discrete valuation v on K = Frac(R) such that R = OK .

Proof. Let R be a DVR with prime element π. Then every non-zero x ∈ R can be written uniquely by x = uπr

where u ∈ R× and r ≥ 0. Similarly we have every x ∈ K× can be written uniquely by x = uπr where u ∈ R× and

r ∈ Z. Now define v : K× → R where uπr 7→ r ∈ Z. Then we get R = OK .

In this set of notes we will be interested in the study of local fields, which is simply a valued field with extra

conditions: we will show how the conditions are useful in later sections.

12
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Definition 2.7 (Local Fields)

Let K be a valued field with valuation v. Then K is called a local fielda if it satisfy the following properties.

(L1) v is a discrete valuation;

(L2) K is complete;

(L3) The residue field kK is finite.

aThere are literatures that includes R and C as archimedean local field. However in this note we focus on non-archimedean ones,
so we omit them by definition.

2.2 Investigation: Hensel’s Lemma

Normally when we solve diophantine equation in K, we project down to see if the diophantine equation have

roots in a residue field kK . If it has no roots in k then it won’t have roots in K.

In here a stronger result is true: If it has a simple root in k, we can lift the root up uniquely in K. This helps us

to solve the diophantine equation a lot easier, as illustrated by the following theorem:

Theorem 2.8 (Hensel’s Lemma)

Suppose that K be a complete discretely valued field. Let f(x) ∈ OK [x] and there exist a ∈ OK such that

1. f(a) ≡ 0 (mod π);

2. f ′(a) 6≡ 0 (mod π).

Then there exist unique x ∈ OK such that

1. f(x) = 0;

2. x ≡ a (mod π).

Proof. We will construct a Cauchy sequence (an) of x that satisfies the following properties:

1. f(an) ≡ 0 (mod πn) 2. an ≡ an+1 (mod πn)

And then if we set a1 = a, then we get the desired properties. We will show that such choice of sequence is

possible by induction. Let an+1 = an + kπn for some k ∈ OK . Then consider

f(an+1) = f(an) + f ′(an)kπn +
1

2
f ′′(an)(kπn)2 + · · ·

≡ f(an) + f ′(an)kπn ≡ 0 (mod πn+1)

where an unique choice of k ∈ kK is possible since f ′(an) 6= 0. Furthermore, notice that f ′(an+1) 6= 0 in kK .

13
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We give an example illustrating this lemma:

Example 2.9

Consider the p-adic number Qp with valuation ring OK = Zp and residue field kK = Fp. Since v(p) = 1 and v

is a discrete valuation, we must have the uniformiser π = p, for the maximal ideal is exactly (p).

Thus the two conditions are actually just f(a) = 0 and f ′(a) 6= 0 in Fp. If both of them are satisfied, then there

exist x in Qp such that f(x) = 0, while x ≡ a (mod p) (meaning that we lifted up the root from Fp to Qp).

To proceed on our study of local fields, we have to first deduce a stronger form of Hensel’s Lemma, which requires

the notion of primitive polynomials:

Definition 2.10 (Primitive polynomial)

Let f(x) ∈ K[x] where f(x) = a0 + a1x + . . . + anx
n. We say f is primitive if the maximum value of ai (for

1 ≤ i ≤ n) is 1.

We are now ready to state the stronger form of Hensel’s Lemma as follows:

Theorem 2.11 (Stronger form of Hensel’s Lemma)

Let K be a complete discretely valued field and f ∈ K[x] is a primitive polynomial with f̄ ∈ kK [x]. If there is
a factorization

f̄(x) = ḡ(x)h̄(x)

with gcd(ḡ, h̄) = 1, then there is a factorization f(x) = g(x)h(x) in OK [x] with ḡ ≡ g (mod π) and h̄ ≡ h
(mod π) with deg g = deg ḡ.

Proof. Let g0 and h0 be arbitrary lifts to OK [x] such that deg g0 = deg ḡ and deg h0 = deg h̄. Then we have

f ≡ g0h0 (mod π) and so f(x) = g0h0 + πr0 for some r0 ∈ OK . Since ḡ and h̄ is coprime there exists a, b such that

ag0 + bh0 ≡ 1 (mod π). (1)

Then plugging in (1) into f yields

f(x) = g0h0 + πr0(ag0 + bh0) + π2(. . .) = (g0 + πr0b)(h0 + πr0a) + π2(. . .).

If deg r0b < deg g0, then we can set g1 = g0 +πr0b and h1 = h0 +πr0a. If not by division algorithm we can write

r0b = qg0 + p and rewrite f as

f(x) = g0h0 + π((r0a+ q)g0 + ph0) + π2(. . .) = (g0 + πp)(h0 + r0a+ q) + π2(. . .)

and proceed as above.

Now we have f = g1h1 + π2r1, r1 ∈ OK [x] and deg g1 = deg ḡ. Inductively do this process to obtain gk and hk

and set g and h to be the limit of the sequence gk and hk respectively. This finishes the proof.

14
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Remark. We shall morally show that this stronger form implies Theorem 2.8. Indeed, given a ∈ OK such that

f(a) ≡ 0 (mod π) and f ′(a) 6= 0 (mod π), the projection f̄ in kK can in fact factorize in

f̄(x) = (x− a)q̄(x)

for some q̄(x), while (x− a, q̄(x)) = 1 since a is a simple root.

By Theorem 2.11 we can lift up the factorization to OK [x] by f(x) = (x − b)q(x) since deg g = 1. But ḡ ≡ g

(mod π), so we must have a ≡ b (mod π), and so the root in OK is in fact b.

Corollary 2.12

Let f(x) = a0 + a1x+ . . .+ anx
n ∈ K[x] and a0, an 6= 0. If f is irreducible then for all 0 ≤ i ≤ n we have

|ai| ≤ max(|a0|, |an|).

Proof. By scaling assume f is primitive, and we shall show that max(|a0|, |an|) = 1. If not let r be minimal such

that |ar| = 1. Then the factorization

f ≡ xr(ar + ar+1x
1 + . . .+ anx

n−r) (mod π)

lifts up to a factorization of f . Contradiction.

Hensel’s Lemma in fact helps us understand the field extension of local fields. For example, one can show that

Qp has 3 quadratic extensions only (for p 6= 2). We will soon see an application in the following section.

2.3 π-adic expansion and the Teichmüller representative

This following theorem provides us a tool much like the decimal expansion in R, so we don’t need to think K as

a set of Cauchy sequences anymore. We also have a even better condition that the π-adic expansion is unique.

Theorem 2.13 (π-adic expansion)

Let K be a complete valued field with uniformizer π. Suppose A ⊆ OK is a set of coset representatives for
kK = OK/(π). Then

1. Every series

∞∑
r=0

arπ
r (with ar ∈ A) converges in K.

2. Every x ∈ OK can be written uniquely as x =

∞∑
r=0

arπ
r with ar ∈ A.

Proof. 1. The partial sum Sn is a Cauchy sequence in K, and so it converges due to completeness.

2. Let x ∈ OK . Notice that there exist unique a0 ∈ A such that |a0 − x| < 1. Then we can write x = a0 + πy1

where y1 ∈ OK . Now we continue inductively. Uniqueness is easy to check by modulo πr.
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Remark. This shows that if K is complete with respect to a non-trivial absolute value, then K is uncountable.

Let K be a local field with finite residue field k with |k| = q. Let f(x) = xq − x ∈ OK [x]. Then for each α ∈ k
which is a simple root of f̄(x) = xq−x ∈ k[x], there is a unique a ∈ OK such that (i) aq = a, and (ii) a ≡ α (mod π)

given by Theorem 2.8. This brings us to the following definition:

Definition 2.14 (Teichmüller representative)

Define the unique a ∈ OK satisfying the conditions above (i.e. aq = a and a ≡ α (mod π)) to be the Te-
ichmüller representative for α ∈ k, which is denoted by a = [α].

Theorem 2.15

Let K be a local field with finite residue field k. If char(K) = p > 0 then K ∼= k((T )).

Proof. Notice that char(k) = char(K) = p, and so |k| = q is a power of p. We shall show that the Teichmüller

map [·] : k → OK gives an injective ring homomorphism. It is clear that it is injective by the projection to k.

Claim

This map preserves addition and multiplication.

Proof. Let α, β ∈ k. Since p divides
(
q
i

)
for all 0 < i < q, we have

([α] + [β])q = [α]q + [β]q = [α] + [β]

as required. Similarly we have ([α][β])q = [α]q[β]q = [α][β].

Then by the definition of [αβ] we have [αβ] = [α][β]. Now we have the isomorphism map k[[T ]]→ OK defined by

∞∑
n=0

anT
n 7→

∞∑
n=0

[an]πn

Hence their fraction field are isomorphic, proving our assertion.
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3 Extension of complete fields

In this section, we will consider finite extensions of complete fields. What’s different from completions of valued

field is that it is complicated to put an absolute value on the extensions and thus we shall dedicate the first half of

the section to construct it. Afterwards we will continue to a discussion of some properties of the extensions.

3.1 Norms

Given a finite extension L/K, the first task is to put an absolute value on L. However we will first instead treat

L as a K-vector space and put a norm on L first, and then we will prove the uniqueness of the norm.

Definition 3.1 (Norm)

Let L be a vector space over a valued field K. A norm on L is a function || · || : L→ R such that

(N1) We have ||x|| ≥ 0 for all x ∈ L, with equality if and only if ||x|| = 0;

(N2) We have ||λx|| = |λ|||x|| for all λ ∈ K and x ∈ L.

(N3) We have the ultrametric inequality for x, y ∈ L:

||x+ y|| ≤ max{||x||, ||y||}.

Two norms || · ||1 and || · ||2 on L are equivalent if there exist C, D ∈ R,

C||x||1 ≤ ||x||2 ≤ D||x||1

for all x ∈ L. Notice that equivalent norms induce the same topology.

We will provide an example of norm that is important below.

Example 3.2

Let L be a vector space over K with dimension n. Pick {ei} to be the basis of L over K. Let v =
∑
viei. Then

the maximum norm ||v||max is defined as

||v||max := max
0≤i≤n

|vi|.

It is clear that it is a norm. If n is infinite, we can similarly define a norm that take place on the supremum of

{|vi|}. In this paper, we will just deal with finite extensions so this definition suffices.

Theorem 3.3

Let K be a complete valued field and L be a finite dimensional vector space over K. Then any norm on L are
equivalent, and L is complete.

17
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Proof. Let {e1, e2, . . . , en} be the basis of L over K. We shall prove that any norm is equivalent to the maximum

norm, i.e. we want to find C and D such that

C||x||max ≤ ||x|| ≤ D||x||max.

In here D is easy to find. Just set D =
∑
||ei|| and we have

||x|| =

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

xiei

∣∣∣∣∣
∣∣∣∣∣ ≤

(
n∑
i=1

||ei||

)
max |xi| = D||x||max.

For C, we shall perform induction on n. If n = 1, then ||x|| = |x1| · ||e1|| = ||e1|| · ||x||max. Hence C = ||e1|| works,

and that L = K is complete.

For n ≥ 2, let Li := Span{e1, e2, . . . , ei−1, ei+1, . . . , en}. By the induction hypothesis, each Li is complete with

respect to || · ||. In particular Li is closed in L.

Then the union
⋃n
i=1 ei + Li is also closed. By construction it doesn’t contain 0. Then there exist C > 0 such

that ||x|| ≥ C. We claim that C||x||max ≤ ||x||.

Indeed if x =
∑
xiei ∈ L and r such that |xr| = maxi(|xi|) = ||x||max. Then

||x||−1
max||x|| = ||x−1

r x||

=

∣∣∣∣∣∣∣∣x1

xr
e1 +

x2

xr
e2 + · · ·+ xr−1

xr
er−1 + er +

xr+1

xr
er+1 + · · ·+ xn

xr
en

∣∣∣∣∣∣∣∣ ≥ C
since this is an element in er + Lr.

For completeness, given a Cauchy sequence in L under the max norm, take the limit of each coordinate to get

the limit of the sequence, using the fact that K is complete. This completes the proof.

This proves the uniqueness of norm, thus the uniqueness of absolute value. Now we shall generally move on to

proving the existence of absolute values in a extension.

Let K be a local field with | · |K defined on K, and L/K be a field extension.

Question

Can we extend the valuation | · |K to | · |L?

Theorem 3.4

Let K be a complete valued field, and L/K be a finite extension. Then the
absolute value on K has an unique extension to an absolute value on L, by

|α|L = n

√
|NL/K(α)|K

where n = [L : K]. Also L is complete with respect to | · |L.

Note

For a field extension L/K, the
norm of α is

NL/K(α) =

(
n∏
i=1

σi(α)

)[L:K(α)]

where σi(α) are the roots of
the minimal polynomial of α
over K.

18



Bendit Chan 3 Extension of complete fields

Proof. Uniqueness and completeness are proved in Theorem 3.3. It remains to show that |α|L = n

√
|NL/K(α)|K is a

valid absolute value. (K1) and (K2) is trivial.

To show the strong triangle inequality, it is equivalent to show that |α|L ≤ 1 implies |α+ 1|L ≤ 1. Consider

OL = {α ∈ L : |α|L ≤ 1} = {α ∈ L : NL/K(α) ∈ OK}.

Claim

OL is the integral closure of OK .

Proof. Let α ∈ OL, then let the minimal polynomial of α over K to be f(x) = a0 + a1x+ · · ·+ xn ∈ K[x].

We want to show ai ∈ OK . Since f is irreducible, by Corollary 2.12 we have

|ai| ≤ max(|a0|, 1)

but we see that ad0 = NL/K(α) ∈ OK for some d. Hence α is integral over OK .

Conversely, suppose α integral over OK . Let K̄ be the splitting field of α over K, notice that

NL/K(α) =
( ∏
σ:L→K̄

σ(α)
)d

since σ(α) is integral over OK and so is NL/K(α). But NL/K(α) ∈ K so it is in OK since OK is integrally closed.

This claim implies the strong triangle inequality, by Atiyah Corollary 5.3 (i.e. OL is a subring of L).

The following proposition will deal with the discreteness of the valuation:

Proposition 3.5

Let K be a discretely valued field with normalised valuation vK . Let L/K be a field extension. Then the image
of vL(L×) must have the form

vL(L×) =
1

e
Z

where e is a divisor of [L : K], called the ramification index.

Proof. Notice that by the identity vL(x) =
1

n
vK(NL/K(x)) we see that vL(L×) is contained in 1

nZ. Let d/e (with d,

e relatively prime) be in the image, with the denominator e chosen largest possible. This is possible since e is clearly

a divisor of n, so the possible denominators are bounded. Now by Bezout there exist r, s ∈ Z such that rd− se = 1.

Then we have

r
d

e
=

1 + se

e
=

1

e
+ s ∈ v(L×).

Since s ∈ Z is clearly in the image, it follows that 1/e ∈ vL(L×). Hence vL(L×) = 1
eZ, by the condition of e.

The ultimate goal of ours is just to show that all finite extensions of local fields are still local fields. It all remains

to show that the residue field is finite. This brings us to the following section since this is quite complex.
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3.2 Ramifications

We shall develop a set of tools for us to look more closely at the extensions of local fields. It helps us further

classify the field extensions into various types, based on their ramification index as described above.

Definition 3.6 (Residue field degree)

Let K be a discretely valued field with residue field kK . Let L be a field extension of K with residue field kL.
Then kL is naturally a field extension of kK . We denote f = [kL : kK ] to be the residue field degree.

Theorem 3.7

Let K be a discretely valued field and L/K be a field extension. Then

[L : K] = ef.

If e = 1, then we say L/K is an unramified extension. While if f = 1, then we say L/K is a totally ramified
extension.

Proof. Choose α1, α2, · · · , αf ∈ O×K such that their image {ᾱi} is the basis of kL over kK . Our major claim is this:

Claim

The set

{αiπjL : 1 ≤ i ≤ f, 0 ≤ j ≤ e− 1}

forms the set of basis of L over K.

Proof. It suffices to check the linear independence and the span of the elements in this set:

Linear independence Let aij ∈ K, not all zero, such that
∑
aijαiπ

j
L = 0. Put

sj =

f∑
i=1

aijαi.

Notice that αi are linearly independent over K since their reduction are linearly independent

over kK . (Indeed,
∑
aiαi = 0 implies that āi = 0 for all i, and so πL | ai. This process can

continue indefinitely, contradiction.) Hence there exist j such that sj 6= 0.

We claim that if sj 6= 0 then e | vL(sj). Let k be an index such that |akj | is maximal. Then

a−1
kj sj =

f∑
i=1

a−1
kj aijαi.

By assumption, |a−1
kj aijαi| ≤ |αi| = 1, which attains equality if i = k. So we have a−1

kj sj

Spanning
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Hence the number of basis e · f is the degree of the extension [L : K].

Theorem 3.8

Let L/K be a finite extension of a local field with degree n. Then L/K is totally ramified if and only if L = K(α)
for some α ∈ L, where α is the root of the polynomial of the form

f(x) = xn + an−1x
n−1 + · · ·+ a0

where vK(ai) ≥ 1 for all i and vK(a0) = 1. Such polynomial is called Eisenstein.

Proof. (⇒) Let α = πL, then 1, πL, π
2
L, . . . , π

n−1
L form a basis over K (by the proof in Theorem 3.7), and hence

satisfy the polynomial

αn + an−1α
n−1 + . . .+ a0 = 0

where ai ∈ K. Considering the absolute value of each term we see that two of the term must have the same absolute

value. However notice each term has different absolute value since they belong different coset v(L×)/v(K×) except

the first and last time. Hence |a0| = |πK |n = |πL| and other |ai| < 1.

(⇐) Assume L = K(α) satisfying the Eisentein polynomial f(x). Then we have |α|n < 1=⇒|α| < 1. Hence |a0|
has the largest absolute value in all other terms except possibly the first term. Then we have the first and last term

being the same, which implies that |α|n = |πK |. Hence we have e ≥ [L : K], which the equality holds, L/K is totally

ramified.

Theorem 3.9

Let L/K be a finite extension of local field with residue field degree f . Let m = qf − 1. Then there exist field
F = K(ζm) such that F/K is a unramified extension and L/F is a totally ramified extension.

Before we end our section, we actually have enough tools to classify all possible local fields, which is actually the

types we illustrated in Example 1.14 and 1.15:

Proposition 3.10

Local fields can only take hold of the following types:

1. Finite extensions of Qp;

2. The field of Laurent series Fq((t)) on finite fields.

Proof. If char(K) = 0. Then Q ⊆ K. In Example 1.11 we illustrated the restriction of | · | to Q is equivalent to | · |p
for some prime p, so we have Qp ⊆ K, i.e. K is a field extension of Qp. Since the residue field k is finite, so clearly
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f = [k : Fp] is finite. Similary, as v(L×) = 1
eZ ∼= Z we have e also finite. Hence by theorem 3.7 [L : K] = ef is finite,

i.e. K is a finite extension of Qp.

If char(K) > 0. Then by theorem 2.10 we see K ∼= Fq((t)).
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4 Ramification Theory

In this section, we will continue the discussion of extension of local fields by decomposing the extension into

subfields and study their Galois group.

Definition 4.1

Let L/K be a finite Galois extension of local fields. Then there is a natural surjective group homomorphism

Gal(L/K)� Gal(kL/kK).

Define the inertia group I as the kernel of the map Gal(L/K)� Gal(kL/kK), which has the form

IL/K = {σ ∈ Gal(L/K) : σ(x) ≡ x (mod πL) ∀x ∈ OL},

which has size e(L/K) and is a normal subgroup of Gal(L/K). We also define the nth ramification group as

Gn := {σ ∈ Gal(L/K) : σ(x) ≡ x (mod πn+1
L ) ∀x ∈ OL}.

Notice I = G0 and G = Gal(L/K) D G1 D G2 D · · · forms a chain of normal subgroup.

In fact, looking at πL is enough to check if σ ∈ Gn.

Proposition 4.2

Gn = {σ ∈ IL/K : σ(πL) ≡ πL (mod πn+1
L )}.

Proof. Consider L/K, by Theorem 3.9 we can split it into a unramified extension F/K and totally ramified extension

L/F . Now we have Gal(kL/kK) ∼= Gal(F/K) since kF = kL by definition of totally ramified. Now we claim that

IL/K is in fact Gal(L/F ). Indeed by Galois Correspondence:

Gal(L/K)/Gal(L/F ) ∼= Gal(F/K) ∼= Gal(kL/kK)

Hence Gal(L/F ) is in fact the kernel of the map Gal(L/K)� Gal(kL/kK).

Now we see that L/F is a totally ramified extension, so we have L = F (πL), so if we have σ(πL) ≡ πL (mod πn+1
L ),

then we have σ(x) ≡ x (mod πn+1
L ) ∀x ∈ OL, since it holds for any polynomials in πL, proving our claim.

We shall prove it gives Gal(L/K) a decomposition series, defined below.

Definition 4.3 (Decomposition series)

Let H be a finite group. A decomposition series for H is a chain of normal subgroup

H = H0 D H1 D H2 D · · · D Hn = {e}

such that Hi/Hi+1 is a cyclic group. If H admits a decomposition series, we call H solvable.
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Proving this requires a technical lemma.

Lemma 4.4

Let σ, τ ∈ Gn. Then τ(πL) = (aτπ
n
L + 1)πL for some aτ ∈ OL. Also we have the identity

στ(πL)

πL
≡ σ(πL)

πL

τ(πL)

πL
(mod πn+1

L )

Proof. By definition we have τ(πL) ≡ πL (mod πn+1
L ), i.e. there exist aτ ∈ OL such that τ(πL) − πL = aτπ

n+1
L .

Rearranging yield the result. Notice that u := aτπ
n
L + 1 is a unit since it clearly not divisible by πL. Hence

τ(πL) = uπL. Substituting this to the identity yields

στ(πL)

πL
≡ σ(πL)

πL

τ(πL)

πL
(mod πn+1

L )

⇐⇒ σ(uπL)

πL
≡ σ(πL)

πL

uπL
πL

(mod πn+1
L )

⇐⇒ σ(u)σ(πL)

πL
≡ uσ(πL)

πL
(mod πn+1

L )

This is true since σ(u) ≡ u (mod πn+1
L ), because σ ∈ Gn.

Proposition 4.5

There is an injective group homomorphism

G0/G1 ↪−→ (k×L , ·)

Proof. We will prove G0 → (k×L , ·) is a group homomorphism given by

σ 7→ σ(πL)

πL
(mod πL)

with kernel G1. It is indeed a group homomorphism given by Lemma 4.4, now
σ(πL)

πL
≡ 1 (mod πL) if and only if

σ(πL) ≡ πL (mod π2
L), i.e. σ ∈ G1.

Proposition 4.6

For n ≥ 1, there is an injective group homomorphism

Gn/Gn+1 ↪−→ (kL,+)

Proof. The map Gn → (kL,+) is a group homomorphism given by σ 7→ aσ (mod πL), with kernel Gn+1.

Remark. This shows that Gn/Gn+1 is a cyclic group.
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Theorem 4.7

Gal(L/K) is solvable.

Proof. Proposition 4.5 and 4.6 gives Gn/Gn+1 is a cyclic group. It remains to show the chain of normal subgroups

Gi terminates at {e}, i.e. we want to show
⋂
Gi = {e}.

Let σ ∈
⋂
Gi. Then for all n ∈ N, we have σ(x) ≡ x (mod πn+1

l ), i.e. v(σ(x)− x) ≥ n for all n ∈ N. However no

real number satisfy the property so σ(x)− x = 0. The assertion is thus proved.

25


	Completion of Valued Field
	Absolute Values
	Completion
	Classification of Absolute Values

	Discrete Valuation
	Valuation Rings
	Investigation: Hensel's Lemma
	-adic expansion and the Teichmüller representative

	Extension of complete fields
	Norms
	Ramifications

	Ramification Theory

